반응형 고분자공학실험 | 메틸메타크릴레이트(Methyl Methacrylate)의 현탁중합 TIP 용액중합과 현탁중합의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 및 분포 등을 알아보는 것이다. 현탁 중합 물에 녹지 않는 단량체를 크기 0.01∼1㎜정도의 크기로 물에 분산시켜 중합하는 공정으로서 분산상 내에서는 단량체가 괴상중합 방식으로 중합되는 방법이다. 이때 중합개시제는 단량체의 분산상에 용해되어 있어야 분상상내에서 중합이 일어난다. 분산상의 크기는 분산안정성을 높이기 위해 사용되는 현탁체의 종류, 함량 및 교반에 큰 영향을 받는다. 현탁제로서는 폴리비닐알콜, 젤라틴 등의 수용성 고분자와 MgCO3와 같은 무기물이 주로 이용되고 있다. 현탁 중합은 폴리스티렌, 폴리메틸메타아크릴레이트, 폴리염화비닐, 폴리염화비닐리렌, 폴리아크릴로니트릴 .. Engineering/고분자공학 2022. 3. 13. 화공생물공학실험 | Methylmethacrylate의 현탁중합 TIP 1. 용액중합과 현탁중합의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 및 분포 등을 알아보는 것이다. 2. 개시제 BPO를 사용하여 MMA를 현탁중합 방법으로 중합한 후, Conversion rate와 생성물의 변화를 확인한다. 단량체를 라디칼중합시켜 고분자 화합물을 얻는 중합방법에서 용액중합은 중합반응에서 용매를 사용하여 벌크중합을 단점을 보완하였다. 그러나 용매를 사용함으로써 생산원가나 작업성에 문제점이 많아 용매대신에 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁중합 또는 진주중합이라 한다. 단량체를 비활성의 매질속에서 0.01~1㎜정도 입자로 분산시켜 중합하면 중합반응 결과 얻어지는 고분자화합물은 비드같은 입자로 되어 침강하.. Engineering/화학생물공정 2020. 3. 8. 고분자공학실험 | PMMA 현탁중합 TIP 용액중합(solution polymerization)과 현탁중합(suspension polymerization)의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 분포 등을 알아본다. 현탁중합과 용액중합의 비교 1. 현탁중합 : 용액중합과 달리 용매대신에 물과 같은 비활성 매질을 사용하여 중합하는 방식 ① 장점 : 고 중합도의 고분자 생성물을 쉽게 얻을 수 있으며, 유화중합(emulsion polymerization)에서와 같이 분산제나 유화제 등을 사용하지 않기 때문에 비교적 순도가 높은 화합물을 얻을 수 있다. 중합반응이 끝난 후 중합체를 반응용기 또는 분산매와 쉽게 분리할 수 있다. 중합체는 입상이고 취급이 용이하므로 공업적으로 많이 사용된다.. Engineering/고분자공학 2020. 1. 1. 이전 1 다음 반응형