반응형 현대물리학실험 | 감쇠진동(Driven Damped Harmonic Oscillations) TIP 양쪽에 용수철이 달린 실로 연결된 원판을 회전시키고 자석을 가까이 하면서 감쇠진동 운동을 하게 하여 그 과정을 관찰한다. Damped Oscillation Damping - the decrease in amplitude caused by dissipative forces and the corresponding motion is called "Damped oscillation". damping 된다는 것은 resistance가 존재한다는 것이다. 우리가 살펴볼 경우는 그 중에서도 a simple harmonic oscillator with a frictional damping force that is directly proportional to the velocity of the oscillatin.. Engineering/물리학 2021. 9. 16. 일반물리학실험 | Energy in Simple Harmonic Motion TIP 1. 단순조화운동에 포함된 에너지를 확인한다. 2. 에너지 보존법칙을 만족하는지 확인한다. 단순 조화 운동에서 에너지 단순 조화 운동에서 에너지는 보존된다. 전체 에너지는 힘 상수 k와 진폭 A로 표현될 수 있다. 실험 방법 1. 실험 과정 1) 노트북 뒷면의 [CHA] 포트에 센서 연결 케이블의 한쪽 끝을 연결하고, 다른 한쪽 끝을 모션 디텍터에 연결한다.(데스크탑을 사용할 경우 본체의 USB 포트에 인터페이스 연결 케이블의 한쪽 끝을 연결하고, 다른 한쪽 끝을 인터페이스에 연결한다. 인터페이스의 [CHA] 포트에 센서 연결 케이블의 한쪽 끝을 연결하고, 다른 한쪽 끝을 모션 디텍터에 연결한다.) 2) Excel 프로그램을 실행한다. 3) [과학실험] 란의 [실험 시트 만들기] 에서 [속도, 가.. Engineering/물리학 2021. 9. 15. 일반물리학실험 | 충돌-충격량과 운동량 TIP 1. 운동량과 충격량의 관계를 이해한다. 2. 경사각과 출발위치의 변화에 따른 충격량과 운동량 변화를 이해한다. 3. 급격한 충돌과 완충된 충돌에서의 힘과 시간의 관계를 이해한다. 실험 방법 1. 실험 과정 1) Pasco 550 Universal Interface와 컴퓨터를 연결하고 전원을 켠다. 2) 컴퓨터 바탕화면에서 Pasco Capstone를 실행시킨다. 3) Capstone의 왼쪽 상단의 장치 도구에서 하드웨어 설정 창을 열고 하드웨어 설정 창 안의 Pasco 550 Universal Interface 그림의 디지털 채널 1을 운동 센서로 선택하고 아날로그 채널 A를 힘 센서로 선택한다. 4) 운동량은 실시간으로 얻어진 속도 값을 통하여 계산 된다. 이를 위하여 아래의 과정대로 계산기를.. Engineering/물리학 2021. 9. 12. 일반물리학실험 | S-CA를 이용한 콘덴서의 충방전 TIP 저항과 콘덴서로 이루어진 회로에서의 콘덴서에 인가되는 전압의 시간적 변화를 관측하고 회로의 용량 시간상수를 구한다. 실험 방법 1. 실험 과정 1) 아래 그림과 같이 콘덴서 충방전 실험장치와 S-CA시스템을 준비한다. 2) 극성에 맞게 S-CA 서버의 직류전원장치를 실험장치의 전원부에 연결하고, 다이얼을 통 해 저항과 콘덴서를 원하는 값에 위치시킨다. 콘덴서 양단의 전압단자를 S-CA 서버의 입력단자 CH A에 연결한다. 3) PhysicsView 프로그램을 실행하고 인터페이스 분석, 데이터로그 보기를 선택한다. 4) S-CA서버의 전압조절 다이얼을 돌려, 5V 내외의 적정 전압을 인기하고, 실험장치의 스 위치를 충전에 위치시킨다. 데이터로그 보기 화면에서 시작을 클릭 입력되는 신호를 확인 한다... Engineering/물리학 2021. 9. 11. 일반물리학실험 | 탄도 진자 TIP 탄도진자를 이용하여 운동량 보존의 원리를 실험을 통하여 학습하고, 공의 초기속도를 계산해 본다. 탄동진자 또는 탄도진자(영어: Ballistic pendulum)는 발사대에서 탄환을 발사하면 발사된 탄환이 진자 끝에 달린 주머니에 실려 곡선을 그리며 올라간다. 이때 올라간 높이를 측정할 수 있다면 운동 에너지는 위치 에너지와 같다는 식을 이용하여 속도를 구하고 높이를 알 수 없다면 h식을 L-cos(올라간 각도)를 이용한다. 단 여기서 L은 진자의 길이이다. 일상생활에서 탄동진자는 화약이나 폭탄의 폭발력을 측정할 때 쓰인다. 발사대에서 화약을 이용해 탄환을 발사하고 값을 측정한 후 탄환의 속도를 구해 운동량 및 충격량을 측정한다. 실험 방법 1. 실험 과정 1) 진자의 각도를 0에 놓고, 총 내에.. Engineering/물리학 2021. 9. 7. 일반물리학실험 | 철사의 강성률 측정 TIP 비틀림 진자를 사용하여 그 주기를 측정함으로써 철사의 강성률을 구한다. 강성률 외부에서 가한 힘에 대해 물체의 모양이 얼마나 변하는지를 나타내는 척도로, 외부의 힘에 의해서 모양은 변하지만 부피는 변하지 않는 경우에 모양이 변하는 비율을 나타낸다. 따라서 외부의 힘에 의해서 물체의 모양이 변하기 어려운 정도를 나타내는 것으로, 물질에 따라 고유한 값을 가지며, 이 값이 작은 것일수록 같은 힘에 대해 큰 변형이 나타난다. 탄성계수(彈性係數)의 하나. 층밀리기탄성률․전단탄성계수(剪斷彈性係數)라고도 한다. 비례한도(比例限度) 내에서 층밀리기변형(모양의 변화)을 일으키게 하는 전단응력(剪斷應力)과 그 때에 생기는 변형의 크기(각도로 표시되며 단위는 라디안을 사용한다)와의 비(比)를 말한다. 큰 강성률을 .. Engineering/물리학 2021. 9. 5. 일반물리학실험 | 후크의 법칙 TIP 후크의 법칙을 알아보고, 용수철을 이용하여 용수철 상수를 구하여 본다. 후크의 법칙 용수철은 탄성을 가진 강철선을 나선형으로 꼬아서 만든 것으로 그것이 성형된 처음 의 길이에 비하여 훨씬 큰 길이 변화에서도 복원력을 내게 되어 있다. 길이가 변할 때 강철선이 비틀리게 되는데 비교적 길이변화가 크더라도 비틀리는 정도는 선형성 을 유지하는 한계 내에 있어 용수철저울처럼 힘이나 무게의 측정에 쓰인다. 용수철 의 복원력은 평형위치에서 벗어난 길이에 비례한다. 이를 후크의 법칙이라 하고 비례계수를 용수철상수라 한다. 즉, 후크 법칙은 물체에 가해진 하중과 그로 인해 발 생하는 변형량과의 관계를 나타내는 고체역학의 기본법칙으로서 1678년 영국의 R. 훅이 용수철의 늘어남에 대한 실험적 연구를 통해 발견하였.. Engineering/물리학 2021. 8. 17. 일반물리학실험 | 용수철의 진동과 공진 TIP 용수철에 의해 진동하는 물체에서 자유 진동과 강제 진동의 특성을 이해한다. 단순조화운동 복원력은 어림잡아서 변위에 비례한다. 즉 평형에서 두 배 멀리 벗어나면 복원력도 두 배가 된다. 이러한 복원력은 평형으로부터 벗어난 정도가 작으면, 실제로도 잘 맞는다. 복원력이 작용한 운동을 단순 조화운동이라고 부른다. 즉, 평형점으로부터의 거리에 비례하는 진동운동이다. 용수철에 질량 m인 물체를 매단 후 x만큼 잡아당겼다 놓으면 특정 구간을 왕복한다. 용수철에 매단 물체가 정지해 있는 지점을 평형점이라 하면 평형점에서 운동에너지가 최대이고, 평형점에서 x만큼 떨어진 부분에서의 위치에너지가 최대가 되며 위아래로 진동하는 운동을 한다. 변위에 비례하는 복원력은 다음과 같이 표기 한다. 용수철 힘 F=-kx F=.. Engineering/물리학 2021. 8. 7. 일반물리학실험 | 볼록렌즈 TIP 볼록렌즈를 통해 물체와 상 사이의 거리를 측정하여 초점거리와 렌즈 공식을 이해한다. 렌즈의 공식 렌즈로 맺어지는 상의 위치와 크기는 렌즈의 볼록 ·오목, 초점거리, 렌즈에 대한 물체의 위치에 따라서 변한다. 예를 들면, 볼록렌즈에서는 물체를 초점보다 렌즈에 가깝게 놓으면 바로 선 허상이 되고, 초점보다 멀리 놓으면 거꾸로 선 실상이 맺어진다. 오목렌즈에서는 물체의 위치에 관계없이 모두 허상이 된다. 이와 같이 상의 위치와 크기는 초점과 주점을 통과하는 빛의 진행방향을 기본으로 도시할 수 있으나 다음 공식에 의해서도 구할 수 있다. 즉, 물체와 상으로부터 렌즈까지의 거리를 각각 a, b 라 하고, 렌즈의 초점거리(오목렌즈인 경우는)를 f 라고 하면 다음과 같이 된다. 단, 상이 허상이 될 때는 b가.. Engineering/물리학 2021. 8. 1. 일반물리학실험 | 일차원 충돌과 운동량 보존 TIP 마찰이 없는 에어트랙에서 두 입자의 충돌과정은 서로에게 가해지는 힘이 내력뿐이므로, 계의 전체 운동량은 충돌 전 후에 변하지 않는다. 이 실험은 에어트랙위에서 일차원 충돌현상을 이용하여 운동량 보존 법칙을 확인하고 에너지 변화를 살펴본다. 실험 방법 1. 실험 과정 1) 에어트랙을 평평한 테이블에 설치하고 트랙의 수평을 조절한다. 송풍기를 연결하여 공기를 공급한 상태에서 글라이더를 올려놓고 글라이더의 움직임을 보면서 트랙의 수평을 맞춘다. 2) 송풍기의 출력이 너무 강하면 글라이더가 흔들릴 수 있으므로 적당한 세기를 찾아야 한다. 3) 글라이더의 무게와 길이를 잰다. 4) 글라이더 두 개를 범퍼와 비탄성충돌 보조기구가 마주 보도록 놓은 뒤 두 글라이더 사이에 포토게이트를 설치한다. 5) 두 글라이.. Engineering/물리학 2019. 11. 19. 일반물리학실험 | 열전효과 - Thermoelectric effect TIP 주어진 온도차에서 발생하는 기전력을 측정한다.(제벡 효과) 열전 모듈에서 발생하는 전력이 최대가 되기 위한 부하저항을 결정한다. 열전효과 두 종류의 금속을 접촉시켜서 폐회로를 만들고 그 두 접합부를 서로 다른 온도를 유지시키면 회로에 전류가 흐르게 된다. 이 현상을 제벡 효과(seebeck effect)라 한다. 열과 전기 사이의 관계를 나타내는 효과의 총칭이며 직접 변화 혹은 역 변환을 의미한다. Seebeck Effect 1. 회로에 열기전력이 발생하는 것과 관련이 있는 것인데, 두 접합부의 온도 차를 주어 △T 가 작을 때 기전력은 △T 에 비례한다. 2. (Va = α△T) 이 때 온도 차가 기전력으로 작용하여 전류를 생성하는 현상이다 3. 실험 예시 그림과 같이 열 교환기(heat exc.. Engineering/물리학 2019. 10. 12. 이전 1 2 3 4 5 다음 반응형