반응형 신소재기초실험 | 광학현미경에 의한 금속의 조직 관찰 TIP 1. 금속의 기계적 성질이나 특성에 영향을 주는 금속조직상의 인자로는 변태조직이외에 결정입도, 형태 및 결정들의 분포상태, 편석 등을 들 수 있다. 따라서 금속 시편을 채취하여 관찰면을 균일하게 연마하고 미세한 조직을 관찰함으로써 그 제조공정이나 열처리 과정을 알 수 있으며 기계적 성질을 예측할 수 있다. 2. 시편의 미세구조를 관찰하기 위한 시편의 Mounting, Polishing, Etching 등의 과정을 익힌다. 또한 금속의 내부조직을 연구하는 데에 가장 많이 쓰이는 현미경으로 금속입자의 크기, 모양, 배열등의 미세구조 관찰을 통해 탄소의 함량에 따른 미세구조의 변화를 습득한다. 탄소강 철과 탄소의 합금으로 0.05∼2.1%의 탄소를 함유한 강을 말한다. 용도에 따라 적당한 탄소량의 것을.. Engineering/신소재 공학 2021. 9. 15. 재료기초실험 | 강의 열처리 전,후에 따른 미세조직관찰 강의 내부구조 즉 미세조직의 차이에 재료의 물리적인 성질이 변하게 된다. 일반적으로 재료의 제반 성질은 그 미세 조직과 밀접한 관계를 가진다. 즉 어떤 재료의 미세조직을 현미경으로 관찰하면 석출 상이나, 결정립의 형상 또는 편석, 기공부분의 상황 등을 판별할 수 있어, 재료의 성질과 재료 조직과의 관계를 규명할 수 있다. 따라서 재료의 사용 중에 발생하는 각종 파단 및 사고의 원인규명에 없어서는 안되는 것이 조직검사 기술이며, 일선 생산 현장에서도 신뢰성 있는 각종 부품 또는 중간재를 수요자에게 공급하기 위한 방안의 하나로 조직검사를 통한 품질관리 기법이 널리 이용되고 있다. 실험 방법 1. 실험 과정 1) 탄소함유량이 0.1%, 1.2% 인 원형 강철을 5mm내외의 두께로 디스크 절삭기로 각각 2개씩 .. Engineering/재료 공학 2021. 1. 9. 금속재료공학실험 | 구리합금 시편 미세조직 관찰 TIP 1. 재료의 특성을 잘 이해하기 위해서는 재료를 구성하고 있는 구성요소, 특히 재료를 이루고 있는 조직에 대하여 알아야 한다. 2. 전이금속 중 대표적인 재료인 구리(Cu)를 가지고 미세조직 관찰, 가공경화, 열처리(소둔), 경도 측정을 직접 실험해봄으로써 재료들의 조직과 성질을 이해한다. 구리(Copper) 주기율표 11족 4주기의 구리족 원소에 속하는 전이금속으로 원소기호는 Cu, 원자량 63.546g/㏖, 녹는점 1084.62℃, 끓는점 2562℃, 밀도 8.94 g/㎤ 이다. 붉은 색의 광택이 나는 금속으로 비교적 무르고 전성과 연성이 풍부해 가공하기 쉬우며, 은(銀) 다음으로 열과 전기의 전도율이 높아 실생활에 널리 쓰인다. 우리나라에서는 경기 포천, 충북 괴산, 충남 당진 등 여러 지역.. Engineering/재료 공학 2021. 1. 4. 재료공학기초실험 | Pb-Sn 상태도 그리기 TIP Cold Juntion을 사용하여 로내의 온도 혹은 전위차를 측정하여 Pb-Sn의 상태도를 직접 그려봄으로써 상태도를 이해하는데 목적이 있다. 상태도(Phase Diagram) 특정 합금계의 미세조직과 상의 구조를 조절하는 것에 대한 많은 정보를 가지고 있는 상태의 변화를 나타낸 그림을 말한다. 리 상태도를 평형도 또는 구성도라고도 한다. 많은 미세조직들은 상변태를 통하여 나타나며, 온도 변화(일반적으로 냉각)에 따라 상의 변화가 일어난다. 한 상에서 다른 상으로 바뀌기도 하며, 기존의 상이 사라지거나 새로운 상이 나타나기도 한다. 상태도를 통하여 이러한 상변태와 이에 따라 나타나는 미세조직(평형 또는 비평형)을 예측할 수 있다. 평형상태도는 온도와 조성 및 상의 양(평형 상태에서의) 사이의 관계.. Engineering/재료 공학 2020. 11. 27. 재료공학기초실험 | 세라믹의 곡강도(Flexural strength)측정 TIP 세라믹 부품에 대한 일반적인 강도 측정법인 곡강도(굽힘강도)를 측정한다. 대부분의 세라믹스가 취성파괴를 하는데 취성 파괴 재료의 강도는 그 재료에 있는 결함들의 크기에 의해 결정이 되는데, 시편마다 이 결함들의 크기가 일정하지 않고 어떤 분포를 이루고 있기 때문에 이에 따른 결과로 같은 시편에서 잘라 만든 시편들도 그 강도가 일정하지 않고 통계적 분포로 나타난다. 어떤 취성파괴 재료 시편의 강도라는 것은 그 시편에 있는 결함 중 가장 심한 결함이 나타내는 가장 낮은 강도 값을 말하는 것이다. 재료에 하중이 걸린 경우, 재료가 파괴되기까지의 변형 저항을 그 재료의 강도라고 한다. 강도는 인장, 압축, 비틀림과 굽힘 강도 시험을 통해 알 수 있다. 실험 방법 1. 실험 과정 1) 강도를 측정할 시편을.. Engineering/재료 공학 2020. 11. 19. 일반화학실험 | 전기도금(Electroplating) - 니켈도금 TIP 니켈은 내식성이 양호하여 강재의 표면에 도금하는 내식성코팅으로 사용된다. 본 실험에서는 전기화학반응을 통해 양극의 니켈을 음극의 황동시편에 전기도금 함으로써 시간 흐름에 따른 도금의 무게 및 두께변화추이를 알아보고자 한다. 전기도금(Electroplating) 전기분해의 원리를 이용하여 물체의 표면을 다른 금속의 얇은 막으로 덮어 금속이온을 환원 석출시켜 얇은 피막을 입히는 표면처리 방법으로써, 전해질의 수용액이나 용융점 등에 직류 전류를 통하면 전해질은 두 전극에 화학변화를 일으키는데 이를 전기분해라고 하며 전해질의 수용액 중에서 전기분해가 일어날 때 용액 중의 양이온은 음극으로 이동하고 음이온은 양극으로 이동합니다. 즉, 전기도금의 원리는 도금시키려는 금속의 염류를 주성분으로 하는 수용액인 전.. Chemistry/일반화학 2020. 6. 18. 재료기초실험 | 재료 조직 분석 - 미세 조직 분석 TIP 재료시험의 기초과정이며 준비과정인 시편 준비 과정(절단, 성형, 연마, 부식)을 익히고 광학현미경에 의한 조직을 관찰하여 이론과 비교분석한다. 실험 방법 1. 절단 1) 대부분의 금속재료는 고속냉각절단기로 절단한다. (절단하기 전에 바인드에 금속재료를 제대로 물려주고, 절단 시에 힘을 너무 줘서 시편이 틀어지거나 절단기의 날이 망가지지 않게 불똥이 조금 튈 정도로만 당겨준다) 2) 연마하기 용이하게 적당한 두께로 절단하여준다. (높이는 시편의 길이보다 작게) 2. 성형 1) 못, 나사와 같은 크기가 작은 시편이나 시편의 가장자리를 관찰할 때 성형을 실행한다. 2) 열경화성 수지나 냉간 경화제에 고착시킨다. 3) 시편에 따라 온도와 압력, 그리고 고착 재료를 선택한다. 3. 연마 1) 조연마 ① 절.. Engineering/재료 공학 2020. 5. 1. 신소재기초실험 | 탄소강의 함량에 따른 미세구조의 변화 TIP 시편의 미세구조를 관찰하기 위한 시편의 Mounting, Polishing, Etching 등의 과정을 익힌다. 또한 금속의 내부조직을 연구하는 데에 가장 많이 쓰이는 현미경으로 금속입자의 크기, 모양, 배열등의 미세구조 관찰을 통해 탄소의 함량에 따른 미세구조의 변화를 습득한다. 과공석강 서냉시 조직변화 1.2%C의 과공석강을 950℃(그림 1의 g점)에서 충분한 시간동안 유지하게 되면 공석강에서와 마찬가지로 균일한 오스테나이트로 된다. 이 강이 그림 4의 h점 온도로 서냉되면 오스테나이트 결정립계에서 초석 시멘타이트(proeutectoid cementite)가 핵생성 되어 성장하게 된다. 다시 이 강이 j점까지 냉각되는 동안에 초석 시멘타이트는 계속 성장해 가면서 오스테나이트에 있는 탄소를 고.. Engineering/신소재 공학 2020. 4. 29. 재료공학기초실험 | 흡수계수 측정 TIP 박막 샘플의 투과율을 측정하여 흡수계수를 계산 할 수 있다. 원자 또는 분자가 빛 에너지를 흡수하면 그 에너지의 크기에 따라 전자 전이 및 진동, 회전, 병진운동과 같은 여러 가지 분자 운동을 일으키게 된다. 다시 말하면, 바닥상태에 있는 원자나 분자가 그 종류에 따라 특정 파장의 자외선 또는 가시 광선을 흡수하여 전자 전이를 일으키면서 흡수 스펙트럼을 나타낸다. 따라서 흡수하는 파장을 알게 되면 원자 또는 분자의 전자구조, 즉 원자 및 분자의 조성이 어떤 것인지를 알아 낼 수 있다. 뿐만 아니라 흡수하는 빛의 세기, 즉 흡광도를 알면 그 원자나 분자의 농도도 결정할 수 있게 된다. 실험 방법 1. 실험 과정 1) 시편홀더 장착 2) 컴퓨터 전원 켜기, UV-Vis Spectrophotometer.. Engineering/재료 공학 2019. 12. 22. 기기분석실험 | X-ray Diffraction (XRD) of NaCl TIP 1. 주어진 시편을 가지고서, XRD 장비를 이용하여 도출해낸 결과를 분석할 수 있다. 2. XRD 장비와 관련된 Bragg's law를 실제 실험과 관련 지어 사용할 수 있다. X-선 회절실험의 특징 1. 시료에 대한 제한이 적고, 시료 회손 적음 시료는 금속, 합금, 무기화합물, 생체재료 등 무엇이든 가능하고, 결정질 및 비정질재료 모두 측정 가능하고, 분말시료든지 액체,film시편에 대해서도 측정 가능하다. 2. 물질의 정성분석 가능. 물질의 결정구조와 화합형태가 다르면 회절패턴의 형태가 변화한다. 따라서, 표준물질의 데이터 파일과 대조해서(JCPDS card이용) 물질을 구별할 수 있다. 3. 격자상수를 정밀하게 구함. 결정의 면각격 d (Å)를 정확히 측정하는 일이 가능하고 구조를 미리 .. Chemistry/기기분석 2019. 11. 16. 금속재료조직실험 | 탄소강 현미경 관찰 TIP 탄소강의 기계적 특성을 크게 좌우하는 금속의 조직 내 결정립의 크기를 측정하고 결정립의 경계를 관찰하기 위한 것으로 관찰용 시험편(절삭표면)을 채취하여 균일하게 연마하는 방법과 금속현미경의 사용방법을 익히면서, 상변태로 형성된 탄소강의 여러 미세 조직들을 현미경으로 관찰하고, 그 차이점과 미세조직의 변화를 통해 그곳에 나타나는 상, 결정립의 형상 및 분포상태, 크기 또는 결함 등을 측정하여 조직과 기계적 성질, 열처리 등과의 관계를 연구한다. 탄소강 1. 공석강 탄소강 내의 탄소의 조성이 0.76wt%C인 탄소강, 727℃에서 공석현상이 일어난다. 공석강의 상변태도에서 공석반응이 일어나는 점을 공석점이라고 한다. 2. 아공석강 탄소강 내의 탄소의 조성이 0.76wt%C보다 적은 탄소강이며 공업적으.. Engineering/재료 공학 2019. 10. 22. 신소재공학실험 | 탄소함량의 경도차이 및 금속조직의 관찰 TIP SM20C, SM45C의 시편으로 탄소 함량에 따른 경도를 측정해 본다. 본 실험은 주어진 시료를 가지고 광학현미경 시편을 만들어 광학현미경에 의한 조직 관찰법의 개요를 습득한다. 탄소강 단순히 강이라고 하는 것으로 불순물로서 규소, 망간, 인, 황을 함유하지만, 철과 탄소의 합금 중에서 열처리 가 가능한 0.1∼1.5 %의 탄소를 함유한 것을 말한다. 탄소량 0.9 % 인 곳을 경계로 해서 조직이 변하여 이것보다 저 탄소에서는 페라이트라고 하는 소량의 탄소가 들어 있는 비교적 연한 철의 상 이 있는데 이 사이를 페라이트와 시멘타이트 가 쪽 매널 세공과 같이 잘게 혼합된 상(펄라이트)이 메우고 있다. 탄소량이 증가할수록, 이 펄라이트의 비율이 증가하여 0.9 % 탄소에서 전부 펄라이트가 된다. 이.. Engineering/신소재 공학 2019. 10. 12. 이전 1 2 다음 반응형