반응형 일반물리학실험 | Tracker 프로그램을 사용한 단조화 운동 TIP 단조화 운동을 하는 물체의 영상을 촬영하고, Tracker를 사용하여 주기를 측정하고 주기와 물체의 질량, 용수철 상수 사이의 관계에 대해 배운다. 단조화 운동을 물리학에서 많은 현상들을 기술하는 데 중요한 역할을 한다. 용수철에 매달린 물체, 진자, RLC 전기회로, 고체 물질이나 분자 내에서 원자의 진동 등은 근사적으로 단조화 운동으로 기술될 수 있기 때문이다. 이 실험에서는 질량, 용수철 상수 등 몇가지 변수를 바꾸었을 때 물체의 진동하는 상태가 어떻게 달라지는가를 관찰한다. 실험 방법[실험1] 수평면에서의 진동1) 수레의 질량을 측정하고 그림2와 같이 장치한 다음 수평계를 이용하여 트랙의 수평을 조정한다. 2) 용수철을 수레와 트랙 끝단에 연결하고 수레의 평형점 위치를 기록한다. .. Engineering/물리학 2022. 10. 30. 일반물리학실험 | Tracker 프로그램을 사용한 포물선 운동 TIP 수평면에 대해 임의의 각도로 공을 발사시킨다. 공의 날아가는 궤적을 영상으로 찍어, 수평방향과 수직방향으로 공이 어떤 운동을 하는지 살펴본다. 실험 방법 1. 실험 과정 1) 발사기를 스탠드에 끼워 고정한다. 2) 발사기의 각도를 30도로 맞춘다. 3) 실험대에서 약2m 떨어진 거리에 삼각대를 설치한다. 4) 삼각대에 카메라를 설치하고 카메라가 실험대를 정면으로 바라보게 한다. 5) 카메라에 보이는 화면이 실험대에 수평이 되도록 한다. 6) 카메라 화면에 쇠공의 궤적이 전부 촬영될 수 있도록 조정한다. 7) 카메라의 초점을 정확하게 맞춘다. 8) 녹화시작과 동시에 방아쇠를 당겨 쇠공을 발사시킨다. 9) 녹화 종료후 촬영이 정확하게 되었는지 확인한다. 10) tracker 프로그램을 통해 영상을 분.. Engineering/물리학 2022. 10. 29. 일반물리학실험 | Hall Effect TIP 홀 효과를 이해하고, Ge로 도핑된 반도체에서 홀 효과에 의한 전기전도도를 조사해 본다. 반도체 도핑 반도체에 불순물을 첨가하는 것이며 이는 반도체의 특성 변화를 일으키므로, 불순물을에 따라 필요한 특성을 얻어낼수 있다. 이를테면 어떠한 불순물은 반도체로 하여금 전도율을 유의미한 값으로 증가시키기도 한다. 1. 비고유 반도체, 고유 반도체 고유 반도체는 도핑된 불순물이 반도체의 전기적 성질에 영향을 미치지 않을만큼 적게 들어 있는 순수한 반도체이다. 이러한 경우 운반자는 열이나 빛에 의해 들떠서 생긴 전자와 양공 뿐이다. 고유 반도체에 열이나 빛이 가해지면, 전자로 가득 차 있던 원자가띠에서 전자가 튀어나와서 전도띠로 이동하는 것이기 때문에, 양공과 전자의 수가 같다. 운반자의 농도는 온도에 변화.. Engineering/물리학 2022. 9. 28. 일반물리학실험 | 탄도 궤도 포물선 도달거리 대 각도 발사 각도가 공의 도달거리에 미치는 영향을 알아보는 것이다. 동일선상의 평면에서 발사할 경우와 테이블에서 바닥으로 발사할 경우로 나누어 도달거리가 최대인 각도를 결정한다. 에너지 보존 수직으로 쏘아올린 공의 운동에너지가 위치에너지로 변환됨을 알아본다. 실험 방법 1. 포물선 도달거리 대 각도 1) 공을 발사하여 상자를 맞추고 공이 맞은 지점에 테이프로 백지 한 장을 고정시킨다. 백지 위레 먹지를 붙인다. 이제 공이 상자에 맞으면 백지 위에 표시된다. 2) 약 5회에 걸쳐 공을 발사한다. 3) 줄자로 발사 지점 ~ 용지의 앞 가장자리 사이의 수평 거리를 측정한다. 줄자가 없으면 연추를 사용해 발사 지점 연직 아래에 해당하는 곳을 찾는다. 이렇게 찾은 테이블 상의 발사 지점 ~ 용지.. Engineering/물리학 2022. 9. 21. 일반물리학실험 | 탄도궤도운동 - Projectile Motion, Projectile Path, Ballistic Pendulum Projectile Motion 수평으로 공을 던질 때의 수직낙하거리와 수평이동거리를 측정해 공의 초속도를 알아내고, 그 초속도를 이용해 어느 각도에서 발사된 물체의 궤도를 예측, 입증한다. 1. 실험 방법 1) 공의 초속도 ① 발사체에 쇠공을 넣고 긴 궤도 위치에 맞추고 한번 쏜다. 이 위치에 흰 종이를 붙이고 그 위에 카본지를 붙인다. 공이 바닥을 칠 때 공은 하얀 종이 위에 흔적을 남기게 된다. ② 같은 실험을 10회 실시한다. ③ 공이 발사체를 떠날 때 공의 밑부분부터 바닥까지의 수직거리를 측정하고 표에 기록한다. ④ 발사체의 총구에 수직추를 달아 실험실 바닥에 기준점을 표시하고, 바닥에 따라 표시된 점부터 수평거리를 측정한다. ⑤ 10회에 대한 수평거리를 구하고 표에 기록한다. ⑥ 10회의 평균.. Engineering/물리학 2022. 9. 19. 일반물리학실험 | 용수철의 단조화 운동 TIP 용수철에 대한 후크의 법칙과 경사면을 따라 진동하는 추의 단순조화 진동을 살피고 주기를 구한다. 평형점과 늘어난 길이 1. 평형점 : 평형점은 경사대 위에 우리가 처음 수레를 올려놓았을 때 기울어진 경사면을 따라서 수레가 가만히 있을때의 위치이다. 2. 늘어난 길이 : 늘어난 길이는 처음 수레에서 질량조절추를 올려놓았을 때 1개 2개 3개 개수를 늘려가면서 질량조절추의 무게를 늘리면 힘을 그만큼 받기 때문에 내려가게 되는데 이때 이 내려온 위치에서 평형점이였을때의 수레의 위치를 뺀만큼이 늘어난 길이가 된다. 진동 물체의 시간이 흐름에 따라 하나의 점을 중심으로 반복적으로 왔다갔다 하면서 움직이는 상태 혹은 어떤 물리적인 값이 일정 값을 기준으로 상하 요동을 보이는 상태이다. 복원력 평형을 이루고 .. Engineering/물리학 2022. 9. 14. 일반물리학실험 | 단진자에 의한 중력가속도 측정 TIP 본 실험은 회전센서에 연결된 단진자의 주기적 운동을 통해 중력가속도를 측정하는 것이다. 단진자는 중력에 의한 복원력 때문에 주기적 운동을 하게 되며, 이 경우 단진자의 주기 및 진동수는 중력가속도와 줄의 길에의 의해 결정된다. 단진자는 단단한 줄에 추를 메달아 중력가속도, g를 결정한다. 위쪽이 고정되어있고, 질량이 무시될 수 있는 끈의 아래쪽에 크기를 무시할수 있는 질량 m 인 추가 매달려 주시운동을 하는 역학계를 단진자라고 한다. 단진자를 통해 역학적 에너지 보존 법칙을 설명할 수 있다. 역학적 에너는 물체의 속력에 따라 결정되는 운동에너지 Ek와 물체의 위치에 따라 결정되는 위치에너지 Ep의 합으로 정의된다. 그리고 위치에너지가 운동에너지로, 또는 그 반대로 전환되기도 한다. 외부의 물리적 .. Engineering/물리학 2022. 8. 24. 일반물리학실험 | 구의 공간운동을 이용한 역학적 에너지 보존법칙 TIP 사면과 원주 궤도를 따라 금속 구를 굴리는 과정에서 구의 회전 운동에너지를 포함하는 역학적 에너지의 보존법칙을 살펴본다. 실험 방법 1. 실험 과정 1) 구의 공간장치를 [그림3]과 같이 끝점 C가 수평을 유지하도록 실험대에 장치하고 트랙으로부터 지면까지의 거리 y를 측정한다. 2) 구의 출발점의 높이를 변화시키면서 구가 원형트랙의 꼭지점 T를 간신히 접촉하면서 지나갈 때의 출발점의 높이 h를 측정한다. 3) 구가 낙하되리라고 추정되는 위치에 먹지와 갱지를 깔고 과정 2)에서 정한 높이 h에서 구를 굴러내려 수평거리 x를 5회 측정한다. 4) 점 C에서 구의 속력 v(실험)를 x와 y를 사용해서 계산한다. 5) 식 (2)에 h값을 대입하여 구한 구의 속력 v(이론)과 비교한다. 6) v(실험)과 .. Engineering/물리학 2022. 8. 23. 일반물리학실험 | 전기에너지에 의한 열의 일당량 측정 열의 일당량 열은 역학적 일로 역학적 일은 열로 서로 전환 될 수 있다. 열과 일의 비례관계를 열의 일당량이라고 한다. 물에 고무풍선을 띄우고 물의 온도를 서서히 높이면, 고무풍선은 서서히 부푼다. 이렇게 열은 고무풍선을 부풀리는 일을 할 수가 있다. 이러한 열과 역학적인 일 사이의 관계를 열의 일당량이라고 한다. 열은 그 열을 담고 있는 물질의 종류에 따라 열량으로 나타 낼 수가 있으며 칼로리(㎈)로 표시한다. 또한 역학적인 일은 줄(J)로 표시한다. 1㎈가 4.2J의 역학적 일을 할 수 있다는 것을 알았다. 실험 방법 실험은 열량계의 몰당량 측정과 열의 일당량 측정의 두 단꼐로 나누어서 한다. 1. 열량계의 몰당량 측정 1) 상온의 물 150cc를 250cc 비커에 붓는다. 2) 전열기 위에 석면 석.. Engineering/물리학 2022. 8. 20. 일반물리학실험 | 정류 회로 TIP 전류를 한 방향으로 흐르도록 하는 성질을 지닌 다이오드(Diode)를 사용하여 교류(AC)를 직류(DC)로 변환할 수 있는 회로를 제작하고 그 특성을 관찰하도록 한다. 정류회로란, 교류 전압을 직류 전압 (AC → DC)로 바꾸어주는 회로를 일컫는다. 이 정류회로에 사용되는 다이오드(Diode)는 전류를 한 쪽 방향으로만 흐르도록 해준다. 이 다이오드는 P형 반도체와 N형 반도체가 접합한 구조를 가지며, 우측 그림의 (a)와 같이 순방향 전압을 걸어주면 (즉, PN 접합 다이오드의 P형 반도체에 (+) 전압을 가할 경우) 전류가 흐르게 되고, 역방향 전압을 걸어주면 (즉, PN 접합 다이오드의 N형 반도체에 (+) 전압을 가하는 경우) 전류가 흐르지 않게 된다. 실험 방법 실험 1) 변압기의 특성.. Engineering/물리학 2022. 8. 17. 일반물리학실험 | 전류 천칭 TIP 균일한 외부 자기장 내에서 도선에 전류가 흐를때 전류도선이 받는 힘(자기력)을 측정하여 자기력, 전류, 도선의 길이, 자기장의 세기의 관계를 살펴보고 전동기와 발전기의 원리를 이해한다. 전류천칭의 원리 자기장 내에서 전류가 흐르는 도선은 보통 자기력이라고 불리는 힘을 받는다. 이 힘의 크기와 방향은 다음의 4 개의 변수, 즉, 전류의 크기(I), 자기장 내의 도선의 길이(L), 자기장의 세기(B), 그리고 자기장과 도선이 이루는 각(θ)에 의하여 결정된다. 이 자기력은 벡터 크로스 곱에 의해 다음과 같이 쓰여진다. Fm = IL×B Fm의 크기만을 표시하면 Fm = ILBsinθm으로 주어진다. 실험 방법 1. 실험 과정 1) [그림]과 같이 전체 실험장치를 구성한다. 측정하고자 하는 전류도선의 .. Engineering/물리학 2022. 8. 14. 일반물리학실험 | 강체의 단진동 TIP 단진동하는 강체의 진동 주기를 측정하여 중력 가속도 g값을 구한다. 돌림힘 문의 한쪽 끝이 점 O에서 경첩에 달려 있는 조감도, 그림을 보자. 점 O를 지나고 지면에 수직한 축에 대하여 회전이 자유롭다. 그림처럼 힘 f는 문 바깥쪽 가장자리에 작용할 때 쉽게 반시계 방향으로 회전한다. 이것은 문의 회전 효과가 상당히 크다는 것을 의미한다. 반면 동일한 힘이 경첩에 보다 가까운 점에 작용한다면 문에 대한 회전효과는 보다 작을 것이다. 어떤 축에 대해 물체를 회전시키는 힘의 능력은 돌림힘, τ라고 불리는 양으로 측정된다. 힘 F에 의한 돌림힘은 다음과 같은 크기를 갖는다. τ = Fd 이 방정식에서, τ(그리스 문자 타우)는 돌림힘이고, 거리 d는 힘 F의 지렛대 팔(또는 모먼트 팔)이다. 지렛대 팔.. Engineering/물리학 2022. 8. 12. 일반물리학실험 | 물의 기화열과 융해열의 측정 TIP 열량계에 물을 넣고 일정량의 수증기 혹은 얼음을 추가한 다음 온도변화를 측정해서 물의 기화열 및 융해열을 측정한다. 물질의 상태 변화는 두 가지의 큰 특성을 가지고 있는데, 첫째가 특정 온도에서의 급작스런 상태변화이고, 둘째는 상태변화 시에는 순물질의 경우 온도 변화가 없다는 점이다. 물의 경우 융해열은 80㎉/kg이고, 기화열은 540㎉/g이다. 이러한 상태의 변화에 필요한 에너지를 숨은열(잠열)이라고 한다. 실험 방법 1. 물의 기화열 측정 1) 열량계가 빈 상태에서 뚜껑과 온도계를 설치한 후 전체의 질량을 측정한다. 2) 열량계가 반 쯤 차도록 찬물을 넣고 물과 온도계의 전체의 질량을 측정하여 넣은 물의 질량 mw를 구한다. 그런 다음 온도계를 보면서 열평형이 되기를 기다린 후에 온도를 잰다.. Engineering/물리학 2022. 8. 10. 일반물리학실험 | 자기유도(전류천칭) TIP 자기장 내에 있는 전류가 흐르는 도선이 받는 힘의 크기를 측정한다. 실험 방법 1. 전류와 힘의 관계 1) 실험장치를 꾸민다. 이때 전류경로가 가장 긴 것을 사용한다. 2) 실험장치와 전자저울의 수평을 잡는다. 3) 자석묶음을 전자저울 위에 놓는다. 4) 전자저울의 용기버튼을 눌러 자석묶음이 전자저울에 올려 있는 상태를 0.00g으로 맞춘다. 5) 전류가 0.50A가 흐르도록 전원공급장치를 조정하고, 이때의 무게를 측정하여 “자기력”칸에 기록한다. 6) 전류를 0.50A씩 증가시켜 3.00A가 될 때까지 과정 (5)를 반복한다. 7) 전류(x축)와 자기력(y축)의 그래프를 그린다. 2. 도선의 길이와 힘의 관계 1) 실험장치를 꾸민다. 2) 실험장치와 전자저울의 수평을 잡는다. 3) 자석묶음을 전.. Engineering/물리학 2022. 8. 7. 일반물리학실험 | 전류천칭 측정 TIP 전류가 흐르는 도선이 자기장 속에서 받는 힘을 척정해 자기장 또는 자기유도 B를 구한다. 실험 방법 1. 실험 과정 1) 솔레노이드 코일과 전류천칭을 [그림2]와 같이 배치한다. 전류 천칭의 받침못을 닦는다. 2) 전류 환선(ABCD)가 수평이 되도록 조정나사로 조장하고, 그림과 같이 회로를 꾸민다. 3) 자기장을 만드는 솔레노이드 코일에 2.5A의 전류를 흘린다. 4) 전류 천칭에 1A의 전류를 흐르게 하면, BC부분이 솔레노이드가 만든 자기유도에 의해 하향력을 받는다. 5) Rider를 이용해 수평이 되게 올려 놓는다. 6) Rider의 길이와 전류 천칭의 전류값을 측정한다. 7) 전류 천칭의 값을 1.5A, 2A, 2.5A로 변화시켜가며 실험을 반복한다. 8) 솔레노이드 코일에 2.8A의 전.. Engineering/물리학 2022. 8. 6. 일반물리학실험 | 자기유도 측정 TIP 1. 전류가 흐르는 도선 주위에는 자기장이 생성되고, 자기장 내에 전류가 흐르는 고리 도선을 넣으면 도선은 토크를 받는다. 즉 전류가 흐르는 도선 사이에는 토크가 작용하는 것이다. 2. 본 실험에서는 직류 전류가 흐르는 솔레노이드의 자기장 안에 전류가 흐르는 고리 도선을 넣고 도선이 받는 토크를 측정하였다. 그리고 이를 통해 토크의 방향을 확인하고, 토크의 자기장, 전류에 대한 의존성을 알아보았다. 실험 방법 1. 실험 과정 1) 솔레노이드를 직류 이중 전원 장치의 한 쪽에 연결한다. 2) 전원 장치의 스위치를 켜고 전류계가 특정 값을 가리키게 한다. 3) 솔레노이드 안에 전류 천칭을 전류가 흐르는 쪽이 들어가게 놓는다. 4) 전류 천칭이 솔레노이드와 닿지 않고, 수평을 유지하도록 조정한다. 5).. Engineering/물리학 2022. 8. 5. 일반물리학실험 | Water Wave TIP 1. 본 실험은 유체를 통해서 파동의 성질과 파동의 실험을 하는 것이다. 2. 보통 역학적 파동 실험을 관찰하기 쉽지 않기 때문에 유체를 이용해서 약간 큰 실험 장치를 이용해서 실험을 진행하는 것으로 보인다. 정상파(standing wave, 사인곡선) 진폭과 진동수가 같은 파동이 서로 반대방향으로 이동할 때 발생하는 파동 조합을 말하며 정재파라고도 한다. 이 때 중첩된 합성파는 몇 개의 부분으로 나누어져 제각기 진동하면서 파동의 모양은 어느 쪽으로도 진행하지 않는다. 이 때 매질의 각 부분만이 일정한 진폭을 가지고 주기적으로 진동하면서 파동이 서 있는 것처럼 보이는데 항상 진동하지 않는 점을 마디(node), 진폭이 가장 큰 곳을 배(loop)라고 한다. - 파동의 진폭이 A이면 정상파의 진폭은.. Engineering/물리학 2022. 7. 16. 일반물리학실험 | 광학 지레에 의한 얇은 판의 두께 측정 TIP 얇은 종이 등의 두께 또는 미세한 길이의 변화를 측정한다. 반사의 법칙 1. 입사하는 광선과 반사하는 광선은 반사면에 수직인 하나의 평면 위에 존재한다. 즉, 입사 광선과 반사 광선, 그리고 법선이 하나의 평면을 만든다. 2. 입사하는 광선과 반사하는 광선은 반사면에 수직인 법선에 대해 서로 반대편에 존재한다. 즉, 반사면에 수직으로 입사하는 광선만이 다시 그 길을 되돌아 나갈 수 있고, 반사 광선은 법선에 대해 입사 광선의 반대편 방향으로 반사된다. 3. 입사각과 반사각은 항상 같다. 즉, 법선을 중심으로 양쪽의 입사 광선과 반사 광선은 대칭을 이루어 진행한다. 4. 이렇게 입사각과 반사각, 법선이 한 평면상에 있으며, 입사각과 반사각의 크기가 같다는 것이 반사의 법칙이다. 실험 방법 1. 실험.. Engineering/물리학 2022. 7. 3. 이전 1 2 3 4 5 6 7 ··· 13 다음 반응형