반응형 유기화학실험 | 중합반응 TIP 1. 스타일렌의 현탁중합을 통해 중합반응에 대해 이해하고 폴리 스타일렌을 합성해 본다. 2. 중합반응의 종류에 대하여 공부한다. 중합반응을 통해 얻어지는 화합물에 대하여 알고 중합반응을 이해한다. 중합(Polymerization) 단위체가 화학반응을 통해 2개 이상 결합하여 분자량이 큰 화합물을 생성하는 반응 원래의 분자량의 정수배의 분자량을 갖는 물질 1. 단위체 : 중합체(polymer)의 원료 2. 중합체 : 중합에 의하여 생성된 화합물 3. 중합도 : 고분자를 구성하는 반복된 단위의 수 중합반응의 방법 1. 벌크 중합 ① 단량체에 그대로 소량의 개시제를 가해서 중합시키는 방식 ② 축합중합체를 만드는데 이용 2. 용액중합 ① 단량체, 용매, 개시제를 사용하는 중합 ② 가능한 한 연쇄이동을 적.. Chemistry/유기화학 2021. 1. 24. 화공생물공학실험 | Methylmethacrylate의 현탁중합 TIP 1. 용액중합과 현탁중합의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 및 분포 등을 알아보는 것이다. 2. 개시제 BPO를 사용하여 MMA를 현탁중합 방법으로 중합한 후, Conversion rate와 생성물의 변화를 확인한다. 단량체를 라디칼중합시켜 고분자 화합물을 얻는 중합방법에서 용액중합은 중합반응에서 용매를 사용하여 벌크중합을 단점을 보완하였다. 그러나 용매를 사용함으로써 생산원가나 작업성에 문제점이 많아 용매대신에 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁중합 또는 진주중합이라 한다. 단량체를 비활성의 매질속에서 0.01~1㎜정도 입자로 분산시켜 중합하면 중합반응 결과 얻어지는 고분자화합물은 비드같은 입자로 되어 침강하.. Engineering/화학생물공정 2020. 3. 8. 고분자공학실험 | 스티렌의 현탁중합 TIP 자유라디칼 중합의 다른 방법인 현탁 중합법을 사용하여 고분자를 합성한다. 현탁 중합 단량체를 라디칼 중합시켜 고분자 화합물을 얻는 중합 방법 중에서 용액 중합에서 용매를 사용하여 벌크 중합의 단점을 보완하였다. 그러나 용매를 사용함으로써 생산원가나 작업성에 문제점이 많아 용매 대신에 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁 중합(Suspension Polymerization) 또는 진주 중합(Pearl Polymerization)이라 한다. 단량체를 비활성의 매질 속에서 0.01~0.1㎜ 정도 입자로 분산시켜 중합하면 중합 반응 결과 얻어지는 고분자화합물은 비드 같은 입자로 되어 침강하므로 이를 비드 중합이라고도 하며 벌크 중합이나 용액 중합과 같은 반응기구로 반응이 진행된다. 일.. Engineering/고분자공학 2020. 2. 1. 고분자공학실험 | 현탁 중합 TIP MMA의 현탁중합을 통하여 현탁중합의 중요성과 장 · 단점, 메커니즘을 알아보고, 벌크 중합, 용액중합과의 차이점을 알아본다. 현탁중합(suspension polymerization) 용매를 사용함으로써 생기는 생산원가나 작업성의 문제점을 해결하기위해 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁중합이라고 하며, 진주중합(pearl polymerization)이라고도 한다. 단량체를 비활성의 매질 속에서 0.01~1㎜ 정도의 크기의 입자로 분산시켜 중합하면 중합반응결과 얻어지는 고분자화합물은 비드(bead)같 은 입자로 되어 침강하므로 비드중합(bead polymerization)이라고도 한다. 1. 장점 ① 고중합도의 고분자 생성물을 쉽게 얻을 수 있다. ② 중합열의 제거가 쉽다. ③.. Engineering/고분자공학 2020. 1. 28. 고분자공학실험 | 현탁 중합 TIP 1. Styrene과 Dibinylbenzene 을 중합하여 polystyrene 을 직접 합성할 수 있으며 중합반응중의 하나인 현탁 중합에 대해서 이해 할 수 있다. 2. 현탁중합에 있어서 생성되는 중합체의 크기나 모양에 영향인 교반 속도가 빨라질수록, 교반 시간이 길어질수록, 온도가 높아질 수록 현탁중합에서 생성물의 입자의 크기가 어떻게 변하는지를 이해하며 수득률을 구해본다. 고분자(高分子, macromolecule)는 분자량이 1만 이상인 큰 분자를 말한다. 100개 이상의 원자로 구성되어 있다. 대개 중합체이다. 물질의 성질로서는 첫 번째로 분자량이 일정하지 않아 녹는점과 끓는점이 일정하지 않고 ,두 번째로 액체 또는 고체로 존재한다. 세 번째로는 반응을 잘 하지 않아 안정적이다. 단량체는.. Engineering/고분자공학 2020. 1. 15. 고분자공학실험 | PMMA 현탁중합 TIP 용액중합(solution polymerization)과 현탁중합(suspension polymerization)의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 분포 등을 알아본다. 현탁중합과 용액중합의 비교 1. 현탁중합 : 용액중합과 달리 용매대신에 물과 같은 비활성 매질을 사용하여 중합하는 방식 ① 장점 : 고 중합도의 고분자 생성물을 쉽게 얻을 수 있으며, 유화중합(emulsion polymerization)에서와 같이 분산제나 유화제 등을 사용하지 않기 때문에 비교적 순도가 높은 화합물을 얻을 수 있다. 중합반응이 끝난 후 중합체를 반응용기 또는 분산매와 쉽게 분리할 수 있다. 중합체는 입상이고 취급이 용이하므로 공업적으로 많이 사용된다.. Engineering/고분자공학 2020. 1. 1. 화학공학실험 | 현탁중합에 의한 PMMA의 제조 및 산가 측정 TIP 1. 현탁중합의 의미를 실험을 통하여 이해한다. 유지 중에 함유되어 있는 유리지방산의 함유도를 알려고 한다. 2. 유지의 산패와 관련한 화학을 이해하고, 유지의 산가측정 원리와 계산방법을 이해한다. 현탁중합에 의한 PMMA의 제조 Poly methyl methacrylate 중합물은 정형적인 비닐계 단량체의 중합물이며 유리처럼 무색투명하고 광선의 투과율이 좋고, 내후성도 우수하며, 유기유리로도 널리 사용되고 있다. Methyl methacrylate는 보통 중합방지제를 포함하고 있으므로 감압(100mmHg/46℃)으로 정제하여 사용함이 좋다. 일반적으로 히드로퀴논이 중합방지제로 사용되며, 감압증류 대신 NaOH-NaCl 수용액(5:2:75)을 시료에 대하여 20% 정도 사용하여 2회 세척하고 다시.. Engineering/화학 공학 | 단위조작 | 유체역학 2019. 12. 5. 고분자공학실험 | PMMA 현탁중합 TIP 1. 본 실험은 정제된 MMA 와 BPO를 이용하여 PMMA를 합성하고자 한다. 2. MMA monomer와 BPO 개시제를 투입하여 반응을 진행시켜 벌크중합을 하다가 점도가 인정 한도에 도달하면 증류수와 PVA수용액을 넣어 suspension 중합을 한다. 반응이 완료된 후 물로 세척후 오븐에 건조시킨후 반응물의 수율과 모양, 결과를 알아보는 것이다. Radical 개시제를 이용한 중합방법 중 bulk 중합은 간단한 장치로 polymer를 제조 할 수 있는 방법이지만 monomer가 중합되면서 발생하는 중합열의 제거가 용이하지 않고 monomer radical이 생성된 polymer에 묻혀 polymer로 변환되지 않는 cage effect가 발생함에 따라 미반응 monomer가 많아진다. 또한.. Engineering/고분자공학 2019. 11. 3. 고분자화학실험 | 폴리스티렌의 합성(Synthesis of polystyrene) TIP 1. 대표적인 amorphous polymer인 polystyrene을 radical에 의한 현탁중합 방법으로 합성해 봄으로서 라디칼 사슬 중합을 이해하고자 한다. 2. Styrene monomer에 과산화벤조일(benzoyl peroxide : BPO)을 반응 개시제로 사용하여 현탁중합(suspension polymerization) 상태로 polystyrene을 합성한다. 지금 우리는 단백질, 나무, 천연고무 등과 같은 천연 고분자 물질과 플라스틱, 인조고무, 합성섬유 등의 인공 고분자 물질들로 싸여 있으며, 특히 인공적으로 제조되는 합성수지는 우리의 생활에 필수불가결한 요소가 되었다. 이러한 고분자 물질은 일반적으로 중합반응에 의해 제조하게 된다. 천연 고분자를 고도로 이용하는 기술과 그의 .. Engineering/고분자공학 2019. 10. 17. 이전 1 다음 반응형