반응형 공학기초실험 | Styrene monomer의 정제, Styrene 벌크중합 TIP 정제된 단량체 styrene에 개시제 AIBN(azobis(isobutyronitrile))을 첨가하여 벌크중합을 진행하고, 고분자 polystyrene에 대해 알아본다. 이 과정에서 개시제의 농도와 중합 온도에 따른 반응 메커니즘을 이해한다. 중합이라 하는 것은 모노머들이 화학적으로 결합하고 매우 큰 사슬형 또는 그물형으로 분자가 만들어지는 반응을 말한다. 적어도 100개정도의 모노머분자가 결합해야하며 수천개이상의 분자가 결합하여 단일중합체분자가 된다. 벌크중합은 단량체와 소량의 개시제 또는 개시제 조차 없는 상태에서의 반응으로서 중합 반응 공정이 매우 단순하고 제조된 고분자도 미반응 단량체를 제외하면 불순물이 거의 없는 순도가 매우 높은 장점을 갖고 있다. 그러나 벌크중합은 중합 반응열.. Engineering/고분자공학 2024. 7. 9. 중합공학실험 | Synthesis of Urea-formaldehyde Resin TIP 1. Urea-formaldehyde 수지의 합성에 대한 이해 및 합성법 습득 2. 부가축합 반응에 대한 이해 실험 방법 1. Urea-formaldehyde 수지의 합성 방법 1) 40% Formaldehyde 1.8 g과 25% aqueous ammonia 1방울을 2구 둥근 플라스크에 투입하여 65 ℃에서 1 hour 동안 교반 및 가열을 실시한다. 2) Aqueous ammonia를 이용하여 반응기의 pH가 7.5~8.5가 되도록 조절한다. 3) 2)의 혼합물을 교반시키면서 urea 1.5 g을 첨가하고, 1시간 동안 100 ℃가 되도록 천천히 승온을 실시한다. 4) 100 ℃ 30 min 유지하면서 butanol 2 ㎖을 첨가한다. 5) 4)의 혼합물에 phosphoric acid를 첨가.. Engineering/고분자공학 2024. 2. 5. 중합공학실험 | Synthesis of Polyamide TIP 1. Polyamide 수지의 합성에 대한 이해 및 합성법 습득 2. 중축합 반응과 계면중합 반응에 대한 이해 중축합반응 (Polycondensation) 물, HCl 등의 저분자 부생성물의 생성을 동반하면서 두 개의 작용기를 지닌 두 단량체의 단계적으로 생성하는 단계 성장 중합반응으로 polyamide와 polyester를 생성한다. 이 반응은 화학평형을 동반하기 때문에, 반응을 생성계 쪽으로 진행하기 위해서 생성하는 부생성물을 반응계로부터 제거해야 한다. 따라서 중축합반응의 평형상수가 클수록 생성계에 유리하다. 실험 방법 1. 비교반 계면중축합 1) 0.75㎖(0.84g)의 sebacoyl chloride를 25㎖의 xylene이 들어있는 비커에 넣어 녹인다. 2) 1.1g의 hexamethy.. Engineering/고분자공학 2024. 1. 29. 고분자공학실험 | 에폭시 수지 합성 TIP 1. bisphenol A 와 epichlorohydrin을 이용하여 epoxy 수지를 합성한다. 2. 에폭시 수지는 비스페놀 에이 (bisphenol A) 와 에피클로로히드린 (epichlorohydrin)의 축합 중합에 의해서 합성된다. 비스페놀A와 에피클로로히드린의 비를 조절하면 다양한 종류의 분자량을 가진 에폭시 수지를 제조할 수 있다. 에폭시 수지의 장점 1. 수지는 경화에 있어 반응수축이 매우 작고 또한 휘발물을 발생하지 않는다. 2. 경화 수지의 전기적 성질이 매우 우수한 성질을 지닌다. 3. 경화 수지의 기계적 성질이 우수할 뿐만 아니라 치수 안정성이 매우 좋다. 4. 기계 가공성이 좋은 것을 만들수가 있다. 5. 내수성, 내 약품성이 우수하다. 6. 가소성이 우수한 성질을 부여할 .. Engineering/고분자공학 2024. 1. 25. 고분자공학실험 | 유화 중합 TIP 유화중합을 통해 폴리스티렌을 제조하는 실험으로, 유화중합의 이론과 방법을 이해하고, 라텍스라 불리는 최종물질을 확인하는 데 목적이 있다. 유화 중합에서 유화제의 역할 유화중합에서 유화제의 존재를 무시할 수 없다. 유화제는 표면장력, 계면장력을 낮추는 역할을 하고 유화중합장소로서Micelle을 형성하고, 생성된 고분자 및 단량체 방을 표면위에 흡착하여 안정화하게 한다. 그리고 입자수 및 입자 크기의 분포조절을 할 수 있으며 계면활성제의 농도는 중합속도, 입자수 및 분자량과 관련이 있는 것으로 요약할 수 있다. 유화제는 유화중합에 있어 중요한 물질이고 그 거동은 복합하다. 소수성monomer에서는 유화제가 입자 표면에 강력히 흡착되어 배열하므로 유능한 유화제에서는 그 사용량이 0.1%정도로도 충분하다.. Engineering/고분자공학 2023. 8. 28. 고분자공학실험 | PMMA 무유화 중합 실험 요약 술폰화-p-크레졸(SPC)은 반응에 미세한 불순물로 첨가되어 폴리아닐린의 3차원 나노섬유 입체구조를 합성하게끔 한다고 한다. 여기서 3차원 나노섬유 입체구조는 산화제로 벤조닐과산화물과 같은 용해성의 유기성 용액에 SPC와 로우릴황산나트륨(SLS) 계면활성제를 이용한 유화중합반응으로 형성되었다. 이 때 온도, 교반의 유무, 반응물의 농도 등 반응 환경에 따라 폴리아닐린의 3차원 나노섬유 입체구조 형성이 어떤 영향을 받는지를 연구하였다. 폴리아닐린의 3차원 나노섬유 입체구조는 직경이 40~160㎚였고, 모노머로 사용된 아닐린의 질량의 134 %라는 높은 수득률과 24시간동안 0.1 S/㎝라는 높은 전도율을 나타내었다고 한다. SPC와 SLS농도의 다양한 비율과 다양한 환경에서 얻어진 폴리아닐린의 .. Engineering/고분자공학 2023. 2. 4. 고분자공학실험 | 유기 태양전지의 제작 및 측정 TIP 1. 대표적인 유기반도체 소재인 p-형 폴리(3-헥실)티오펜, poly(3-hexyl thiophene)과 n-형 플러렌 유도체, phenyl-C61-butyric acid methyl ester(PCBM)를 이용한 유기태양전지의 소개, π-공액구조 및 전하이동 메커니즘, 광기전력 효과(photovoltaic effect)를 이해한다. 2. 유기태양전지 효율에 있어 벌크 이종접합(bulk heterojunction, BHJ)와 2층(bi-layer)구조의 차이점을 이해한다. 유기태양전지의 구조 유기 태양전지의 기본구조는 금속 / 유기반도체 (광활성층) / 금속(metal / semi-conductor or isulator / metal, MIM)구조로 간단히 표시할 수 있는데, 높은 일함수를 가진.. Engineering/고분자공학 2022. 5. 28. 고분자공학실험 | 박막 태양전지 TIP 1. CZTSSe 흡수층 구조를 통해서 박막 태양 전지를 이해하고 특성을 평가한다. 2. 실험 1 : S/Se 파우더 비율을 조절하여 흡수층의 band gap을 조절한다. 3. 실험 2 : 솔라 시뮬레이터를 이용하여 태양 전지의 특성을 평가한다. CIGS는 효율이 23%로 굉장히 높지만 In과 Ga의 희소성과 유독성 때문에 Zn와 Sn으로 대체한 CZTSSe 연구의 필요성이 높아지고 있다. CZTSSe는 CIGS에 비해 독성이 없고 자원이 풍부하여 경제적이지만 아직 최고 효율이 13% 정도로 CIGS에 비교하면 매우 낮다. CZT는 Cu, Zn, Sn으로 metal sputter(DC)를 이용해 올린다. 그 후, 열처리 과정에서 S와 Se 파우더를 넣어주는데 이 비율에 따라 특성이 달라진다. S를.. Engineering/고분자공학 2022. 5. 21. 고분자공학실험 | 메틸메타크릴레이트(Methyl Methacrylate)의 현탁중합 TIP 용액중합과 현탁중합의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 및 분포 등을 알아보는 것이다. 현탁 중합 물에 녹지 않는 단량체를 크기 0.01∼1㎜정도의 크기로 물에 분산시켜 중합하는 공정으로서 분산상 내에서는 단량체가 괴상중합 방식으로 중합되는 방법이다. 이때 중합개시제는 단량체의 분산상에 용해되어 있어야 분상상내에서 중합이 일어난다. 분산상의 크기는 분산안정성을 높이기 위해 사용되는 현탁체의 종류, 함량 및 교반에 큰 영향을 받는다. 현탁제로서는 폴리비닐알콜, 젤라틴 등의 수용성 고분자와 MgCO3와 같은 무기물이 주로 이용되고 있다. 현탁 중합은 폴리스티렌, 폴리메틸메타아크릴레이트, 폴리염화비닐, 폴리염화비닐리렌, 폴리아크릴로니트릴 .. Engineering/고분자공학 2022. 3. 13. 고분자공학실험 | UTM 인장 실험 대부분의 구조물은 일반적으로 다양한 정적 및 동적 하중과 변형이 가해지게 되는 데 구조물을 구성하는 재료는 이와 같은 하중과 변형을 감당할 수 있도록 재료의 강도가 설계되어야 한다. 본 시험은 재료의 강도 설계를 위한 기초 정보를 제공하는 정적 인장실험을 통하여 다음과 같은 실험목적을 달성하고자 한다. 첫째, 인장실험을 위하여 사용되는 재료시험기의 사용방법을 습득하고, 재료의 강도 해석에 사용되는 기본적인 역학적 파라미터의 측정 방법과 원리를 이해한다. 둘째, 재료에 가해지는 하중과 측정된 변위 사이의 관계를 나타내는 재료의 기계적 거동을 이해하고, 이로부터 재료의 기계적 특성을 결정하는 탄성계수, 항복강도, 인장강도, 연신율, 단면수축률 등과 같은 재료물성치를 구하는 방법을 습득한다. 셋째, 재료의 기.. Engineering/고분자공학 2021. 8. 15. 고분자공학실험 | 스티렌의 현탁중합 TIP 자유라디칼 중합의 다른 방법인 현탁 중합법을 사용하여 고분자를 합성한다. 현탁 중합 단량체를 라디칼 중합시켜 고분자 화합물을 얻는 중합 방법 중에서 용액 중합에서 용매를 사용하여 벌크 중합의 단점을 보완하였다. 그러나 용매를 사용함으로써 생산원가나 작업성에 문제점이 많아 용매 대신에 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁 중합(Suspension Polymerization) 또는 진주 중합(Pearl Polymerization)이라 한다. 단량체를 비활성의 매질 속에서 0.01~0.1㎜ 정도 입자로 분산시켜 중합하면 중합 반응 결과 얻어지는 고분자화합물은 비드 같은 입자로 되어 침강하므로 이를 비드 중합이라고도 하며 벌크 중합이나 용액 중합과 같은 반응기구로 반응이 진행된다. 일.. Engineering/고분자공학 2020. 2. 1. 고분자공학실험 | 현탁 중합 TIP MMA의 현탁중합을 통하여 현탁중합의 중요성과 장 · 단점, 메커니즘을 알아보고, 벌크 중합, 용액중합과의 차이점을 알아본다. 현탁중합(suspension polymerization) 용매를 사용함으로써 생기는 생산원가나 작업성의 문제점을 해결하기위해 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁중합이라고 하며, 진주중합(pearl polymerization)이라고도 한다. 단량체를 비활성의 매질 속에서 0.01~1㎜ 정도의 크기의 입자로 분산시켜 중합하면 중합반응결과 얻어지는 고분자화합물은 비드(bead)같 은 입자로 되어 침강하므로 비드중합(bead polymerization)이라고도 한다. 1. 장점 ① 고중합도의 고분자 생성물을 쉽게 얻을 수 있다. ② 중합열의 제거가 쉽다. ③.. Engineering/고분자공학 2020. 1. 28. 고분자공학실험 | 현탁 중합 TIP 1. Styrene과 Dibinylbenzene 을 중합하여 polystyrene 을 직접 합성할 수 있으며 중합반응중의 하나인 현탁 중합에 대해서 이해 할 수 있다. 2. 현탁중합에 있어서 생성되는 중합체의 크기나 모양에 영향인 교반 속도가 빨라질수록, 교반 시간이 길어질수록, 온도가 높아질 수록 현탁중합에서 생성물의 입자의 크기가 어떻게 변하는지를 이해하며 수득률을 구해본다. 고분자(高分子, macromolecule)는 분자량이 1만 이상인 큰 분자를 말한다. 100개 이상의 원자로 구성되어 있다. 대개 중합체이다. 물질의 성질로서는 첫 번째로 분자량이 일정하지 않아 녹는점과 끓는점이 일정하지 않고 ,두 번째로 액체 또는 고체로 존재한다. 세 번째로는 반응을 잘 하지 않아 안정적이다. 단량체는.. Engineering/고분자공학 2020. 1. 15. 고분자공학실험 | Styrene 현탁중합 원래 실험은 스테린의 용액중합이지만 용액중합시 용매를 많이 사용해야 돼서 현탁중합으로 폴리 스티렌을 만들게 되었다. 단위체를 전혀 용해하지 않거나 또는 거의 용해하지 않는 매체(주로 물)에 단위체를 분산시키고 매체에 녹지 않고 단위체에 잘 녹는 성질의 중합 개시제를 사용하여 현탁한 단위체의 작은 방울 내에서 중합 반응을 진행시키는 중합 방법으로, 분산된 작은 방울 형태대로 중합이 진행되며 최후의 중합물이 아름다운 투명한 입자 내지 비즈 모양으로 얻어지는 경우가 많으므로 이 중합법을 입자상 중합 또는 펄(pearl) 중합이라 부르는 경우도 있다. 단위체를 물 속에 뒤섞어 분산시켜 보통 분산의 안정제, 보조 안정제를 첨가한다. 현탁중합은 중합속도가 빠르고 발열반응이지만 분산매가 존재하므로 반응 온도 조절이 .. Engineering/고분자공학 2020. 1. 5. 고분자공학실험 | PMMA 현탁중합 TIP 용액중합(solution polymerization)과 현탁중합(suspension polymerization)의 차이를 이해하고 교반속도, 단량체와 물과의 비율, 안정제의 종류에 따른 생성중합체의 크기, 분자량 분포 등을 알아본다. 현탁중합과 용액중합의 비교 1. 현탁중합 : 용액중합과 달리 용매대신에 물과 같은 비활성 매질을 사용하여 중합하는 방식 ① 장점 : 고 중합도의 고분자 생성물을 쉽게 얻을 수 있으며, 유화중합(emulsion polymerization)에서와 같이 분산제나 유화제 등을 사용하지 않기 때문에 비교적 순도가 높은 화합물을 얻을 수 있다. 중합반응이 끝난 후 중합체를 반응용기 또는 분산매와 쉽게 분리할 수 있다. 중합체는 입상이고 취급이 용이하므로 공업적으로 많이 사용된다.. Engineering/고분자공학 2020. 1. 1. 고분자공학실험 | 고분자의 용융 흐름지수 측정 TIP 일정한 온도와 압력 조건 하에서 용융된 고분자를 규정된 깊이와 지름의 다이를 통해서 일정한 하중으로 압출시킬 때의 압출속도를 측정함으로써 용융된 고분자의 유동성을 측정해 보도록 하자. 모세관형 점도계의 형태를 가진 압출형 플라스토미터를 이용하여 일정한 온도와 압력 조건 하에서 용융된 열가소성 고분자를 규정된 깊이와 지름의 다이를 통해서 일정한 하중으로 압출시킬 때의 압출속도를 측정함으로써 용융된 고분자의 유동성을 측정한다. 압출속도는 10분당의 고분자 유출량으로 표시하게 되는데, 이 양을 용융지수 또는 용융유량이라 부른다. 본 실험에서의 용융지수 측정방법에는 (A)조작법과 (B)조작법이 있다. (A)조작법은 용융지수가 0.15 ~ 50 g / 10 min인 재료에 적용되는 수동조작법이고, (B)조.. Engineering/고분자공학 2019. 12. 27. 고분자공학실험 | ITO Pattering 공정 TIP 1. OLED / PLED / OTFT / OPV device의 투명전극으로 사용되는 ITO를 원하는 pattern으로 식각하는 법을 습득한다. 2. Photo lithorgraphy에 사용하는 각 공정의 원리와 공정 시 주의점을 습득한다. Lift off 공정 Lift-off공정이란 반도체 공정중 Etching(식각) 공정중에 일반적인 etching을 사용하지 않고 패터닝(patterning)하는 경우가 있는데, 대표적으로 이에 속하는 방법이다. film deposition 이전에 PR 패터닝을 하고 그 위에 film deposition을 한 후 PR을 제거함으로서 패턴을 형성시키는 방법을 말한다. PR을 용제(solvent)에 녹이는 과정에서 PR 위에 deposition된 필름은 제거되고 기.. Engineering/고분자공학 2019. 12. 3. 고분자공학실험 | PMMA 현탁중합 TIP 1. 본 실험은 정제된 MMA 와 BPO를 이용하여 PMMA를 합성하고자 한다. 2. MMA monomer와 BPO 개시제를 투입하여 반응을 진행시켜 벌크중합을 하다가 점도가 인정 한도에 도달하면 증류수와 PVA수용액을 넣어 suspension 중합을 한다. 반응이 완료된 후 물로 세척후 오븐에 건조시킨후 반응물의 수율과 모양, 결과를 알아보는 것이다. Radical 개시제를 이용한 중합방법 중 bulk 중합은 간단한 장치로 polymer를 제조 할 수 있는 방법이지만 monomer가 중합되면서 발생하는 중합열의 제거가 용이하지 않고 monomer radical이 생성된 polymer에 묻혀 polymer로 변환되지 않는 cage effect가 발생함에 따라 미반응 monomer가 많아진다. 또한.. Engineering/고분자공학 2019. 11. 3. 이전 1 다음 반응형