반응형 일반물리학실험 | 얼음을 이용한 열전도도 측정 TIP 고체의 열전도도를 측정을 통하여 열전도 현상 및 열전도 방정식을 이해하고 고체 내에서 전도되는 열량의 측정방법을 익힌다. 실험 배경 물질의 이동을 수반하지 않고 고온부에서 저온부로 열이 전달되어 가는 현상을 말합니다. 예를 들면 금속막대의 한쪽 끝을 가열하면 가열되는 부분부터 순차적으로 뜨거워지는 경우나, 온도가 다른 물체끼리의 접촉에 의해 열의 이동이 일어나는 경우를 들 수 있습니다. 액체나 기체 내부에서의 열의 이동은 주로 대류(對流)에 의해 일어나지만, 고체내부에서는 주로 이 방법에 의해서 열이 이동합니다. 열전도에 의한 물체 내부에서의 열의 전달속도는 물질 내부에서의 온도기울기(단위길이당의 온도차)에 비례하지만, 물질의 종류에 따라 큰 차이가 있습니다. 예를 들면, 구리나 철과 같은 전기의.. Engineering/물리학 2023. 1. 28. 일반화학실험 | 밀도 측정 TIP 1. 고체와 액체물질의 질량과 부피를 측정하여 밀도를 계산할 수 있다. 2. 측정한 밀도 값을 비교해보고 밀도는 물질의 특성임을 설명할 수 있다. 아르키메데스의 원리 시라쿠스의 왕 히에론 Ⅱ세는 왕관을 만드는 사람에게 금덩어리를 내주면 왕관을 만들어 오도록 명령하였다. 히에론 왕은 완성된 왕관이 정말 순금으로 만들어졌는지를 아르키메데스에게 조사하도록 하였다. 왕관에 섞었을 은이나 구리 같은 물질은 금보다 밀도가 작기 때문에 같은 질량의 금보다 그 부피가 더 크다. 따라서, 은이나 구리 등을 섞어 왕관을 만들었다면 같은 질량의 금보다도 그 부피가 더 클 것이다. 아르키메데스는 왕관과 또 그것과 같은 질량의 금을 따로따로 물 속에 담그고 넘쳐 흘러나온 물의 부피가 왕관이 더 많다는 것으로 만들어온 왕.. Chemistry/일반화학 2023. 1. 10. 일반화학실험 | 재결정(Recrystallization) TIP 용질을 용매에 완전히 녹인 후 재결정을 통해 용질의 결정형태로 얻어내어 불순물을 적게 함유된 고체를 만들 수 있다. 실험 배경 이 세상에서 순물질로 존재하는 것은 거의 없다. 그러나 화학실험에서 순물질이라는 것은 매우 중요하다. 실험실에서도 시험관을 씻을 때에는 수돗물을 사용하지만, 시약을 만들 때는 증류수를 사용한다. 수돗물보다 증류수가 더 순물질에 가깝기 때문이다. 그래서 많은 화학자 또는 다른 과학자들은 계속 실험해서 여러 가지 방법을 통해 순물질을 구별하여 각각의 특징을 정리하고 분류한다. 고체인 물질은 재결정법으로 순수한 물질에 가깝게 얻을 수 있다. 재결정이란, 결정을 녹이거나 용매에 용해시켜 결정구조를 완전히 분열시킨 후 다시 새롭게 결정을 형성시키면서 불순물을 용액에 남아있게 하여 .. Chemistry/일반화학 2022. 12. 31. 응용화공기초실험 | 재결정(Recrystallization) TIP 고체 유기화합물을 적절한 용매에 완전히 녹인 후, 다시 깨끗한 결정형태로 얻어냄으로써 고체화합물을 정제하는 방법에 대해서 알아본다. 아울러 고체화합물의 녹는점 및 용해도, 용매의 극성, 여과 기술들에 대해서 익힌다. 실험 배경 재결정 과정이란 근본적으로, 결정을 녹이거나 용해시켜서 결정구조를 완전히 분열시켜서 새로운 결정을 형성하게 함으로써 불순물이 용액이나 용액 속에 남아있게 함으로서 순도를 높이는 방법이다. 재결정법에서는 거의 모든 고체가 차가운 용매에서 보다 뜨거운 용매에서 훨씬 용해도가 큰 경우가 더욱 유리하다. 온도를 올리는 상한선은 용매의 끓는점까지로 제한된다. 결정이 차가운 상태에서는 다 녹일 수 없는 용매의 양으로 뜨거운 용매에 녹이고 용액을 식히면 결정이 생겨 가라앉게 된다. 이때.. Engineering/화학 공학 | 단위조작 | 유체역학 2022. 12. 29. 섬유화학실험 | 재결정 TIP 고체의 순도 향상을 위한 조작. 즉, 용해도차와 온도차를 이용하여 순도가 좋은 물질을 얻는다. 실험 방법 1. 실험 과정 1) 불순한 나프탈렌(naphthalene) 약 10g 정도를 150cc 삼각플라스크에 넣고 95% 에탄올을 40㎖ 메스실린더로 계량하여 넣는다. 적당량의 활성탄과 고반바(stirring bar)도 넣어준다 ※ 순서는 고체가 먼저 액체는 그 다음이다. 활성탄을 넣어주면 색상이 있는 이물질을 흡착시키는 효과가 있다 2) 가열 플레이트로 에탄올이 끓는점 68℃ 까지 서서히 가열시킨다. 가열후 어느 정도 식혀준다. ※ 식혀줄 때 너무 식혀주면 재결정이 일어나므로 살짝만 식혀주는게 좋다 3) 2)의 실험 종료된 플라스크를 병풍 접기한 여과지에 부어 넣는다. (여과지는 미리 깔때기에 끼.. Engineering/고분자공학 2022. 12. 27. 일반화학실험 | 액체와 고체의 밀도 TIP 1. 물질의 질량과 부피를 측정하고 측정값으로 물질의 밀도를 측정하는 법을 배운다. 2. 물질의 밀도는 물질의 부피에 대한 질량의 관계를 측정하는 기본적 성질이므로 주어진 온도와 압력에서 화합물의 질량 및 부피를 측정하여 밀도를 구한다. 밀도의 정의 및 특징 밀도의 특징으로는 각 물질마다 특정한 값을 가지고 있다는 것이고 물을 제외하고는 일반적으로 고체 >액체 >>기체의 순이 된다. 물질의 온도가 변하면 부피가 변하기 때문에 밀도도 변한다. 밀도 = 질량/부피 = m/V[ g/㎖ ] 원기둥의 부피 = π(반지름)2(높이) 실제 4℃의 물의 밀도 : 1g/㎖, 실제 10원 동전의 밀도 : 8.2g/㎤ 실린더의 눈금을 읽을 때에는 눈높이를 맞추고 물의 경우 아래 봉우리 부분을, 수은의 경우 윗 봉우리.. Chemistry/일반화학 2021. 11. 8. 일반화학실험 | 액체 및 고체의 밀도의 측정과 고체 입자 충전층의 공극율 측정 TIP 물체가 갖고 있는 부피당 무게를 표준이 되는 물질의 무게와 비교함으로써 서로 다른 물질별로 무게의 정도를 가늠할 수 있고, 체적에 대한 무게릐 비를 구허면 모든 물질에 대한 밀도를 알 수 있으며, 이와 같은 이론과 기구를 사용하여 비중 및 밀도를 측정하고 비교하여 본다. 물질은 질량과 공간을 차지하고 있기 때문에 각 물질이 차지하는 일정한 부피중에 포함되는 질량을 나타냄으로서 물질을 서로 비교하는 것이 가능하다. 밀도는 단위 부피당의 질량으로 정의되는데 이때의 질량은 일반적으로 g으로 나타내며 부피는 ㏄ 또는 ㎖로 나타낸다. 밀도는 물질의 부피와 질량을 측정하여 이 질량을 부피로 나눔으로써 구할 수가 있다. D = m/V 물질의 밀도는 그 물질의 특성이고, 질량을 부피로 또는 부피를 질량으로 환산.. Chemistry/일반화학 2021. 11. 4. 일반화학실험 | 액체와 고체의 밀도 측정 TIP 1. 물질의 밀도는 물질의 부피에 대한 질량의 관계를 측정하는 기본적 성질이다. 2. 화합물의 질량 및 부피를 측정하여 주어진 온도와 압력에서 액체와 고체의 밀도를 측정한다. 밀도 단위 부피의 그 물질이 가는 질량으로 SI단위는 Kg/㎥이지만 화학 실험에서는 g/㎤을 많이 사용한다. 밀도는 온도에 따라 변화하므로 -특히 기체의 경우는 더욱 민감하다. 온도를 함께 측정한다. 밀도를 측정하기 위해서는 시료의 질량과 부피를 측정하여야 한다. 질량 측정할 때 0.01g정도의 정밀도를 요하는 측정에는 어림저울(triple beam balance)을, 더욱 정밀한 질량의 측정에는 화학저울이 이용된다. 부피를 측정할 때에는 눈금실린더, 뷰렛, 피펫 등이 사용되며 눈금실린더 보다는 뷰렛이나 피펫이 정밀도가 높은.. Chemistry/일반화학 2021. 11. 2. 일반화학실험 | 용해열 측정 TIP 고체가 액체에 녹을 때 발생하는 용해열을 측정하고, 발열 반응과 흡열반응의 상태를 관찰한다. 고체 상태의 염에서는 양이온과 음이온 사이에 강한 인력이 작용해서 안정화되어 있다. 극성이 강한 물 분자들이 양이온과 음이온을 둘러싸서 상당히 안정화시키기 때문에 이온결합을 하고 있는 염은 물에 잘 녹는다. 그러나 양이온과 음이온들이 물 속에서 안정화되는 정도는 이온이 가지고 있는 전하와 이온의 크기에 따라 매우 다양하기 때문에 고체 상태로 있을 경우보다 더 안정한 경우도 있고, 그렇지 않은 경우도 있다. 염화칼슘을 물에 녹이면 81.3 kJ/㏖의 열이 방출된다. 즉 고체상태의 염화칼슘에서 +2가의 양이온인 칼슘이온 주위에 위치한 -1가의 염소 음이온 두개가 서로 가까이 위치하고 있는 상태보다는 극성의 물.. Chemistry/일반화학 2021. 9. 21. 일반화학개론 | 침전과 용해 침전 일반적으로 액체 속에 존재하는 작은 고체가 액체 바닥에 가라앉아 쌓이는 일을 말한다. 화학에서는 시약을 가하거나 가열·냉각 등에 의하여 일어나는 화학변화의 생성물이 용액 속에 나타나는 현상, 또는 용질이 포화에 도달하여 용액 속에 나오는 것을 말한다. 또, 이때 생긴 고체를 침전물 또는 침전이라고 한다. 침전생성법은 물질의 분리·정제 또는 분석에 흔히 사용되며 화학실험에서 중요한 조작이다. 용해 용질이 용매와 고르게 섞이는 현상. 일반적으로 ‘녹는다’고 표현하며, 두 물질이 균일하게 섞일 때에 사용하는 말이다. 예를 들어, 물에 설탕을 넣고 섞으면 설탕분자 하나하나가 물 속에 고르게 퍼져 물분자들과 균일하게 섞인 상태로 존재하게 된다. 이때 비커 속의 어느 부분을 취해도 설탕은 같은 농도로 존재하며.. Chemistry/일반화학 2021. 8. 6. 일반화학실험 | 수화물 결정의 성질과 수분 함량 TIP 수화물 결정의 성질을 알아내고 수분함량을 측정한다 많은 이온 화합물들은 수용액으로부터 침전을 형성하게 되면 고체의 이온 결정에 물 분자가 결합하게 된다. 이온성 수화물 또는 수화된 화합물이라 불리는 이와 같은 화합물은 결정격자 안에 물 분자를 포함하게 된다. 수화물 이온화합물이 수용액으로부터 침전을 형성하게 되면 고체의 이온결정에 물분자가 결합하게 되는데, 이렇게 물분자와 결합하는 과정을 수화라고 하고 결정 내에 물분자를 포함한 화합물을 수화된 화합물(수화물)이라 한다. 실험 방법 1. 수화물 결정의 성질 1) CuSO4·5H2O, CoCl2·6H2O, Ni(NO3)2·6H2O를 1.0g 정도씩을 화학저울로 정확히 측정하고 미리 무게를 단 시험관 3개에 각각 넣는다. 2) 시료가 들어 있는 각각의.. Chemistry/일반화학 2021. 5. 9. 일반화학실험 | 물과 기름 사이 TIP 밀도가 다른 용매 사이에서 일어나는 현상에 대해 파악해 본다. 밀도 1) 단위 체적 당 질량(g/㎖, g/㎤), 물질의 고유값 2) 일반적 밀도 : 고체>액체>기체, 물의 밀도 : 액체>고체>기체 Q. 물의 경우 액체 상태의 밀도가 가장 높다. 그 이유는? 기체 : 온도 ↑ ⇒ 밀도 ↓, 압력 ↑ ⇒ 밀도 ↑ 비중 1) 어떤 물질의 질량과 같은 체적의 표준물질의 질량과의 비 2) 표준물질 : 고체 및 액체 ⇒ 1atm, 4℃ 물, 기체 ⇒ 1atm, 0℃ 공기 3) 일반적 비중 : 밀도와 같은 개념 계면활성제 1) 계면 : 2상간의 경계 2) 계면활성 : 성질이 서로 다른 두 물질이 맞닿을 때에 액체의 표면 장력을 현저하게 감소시키는 물질의 성질. 3) 계면활성제 : 성질이 다른 두 물질이 맞닿을.. Chemistry/일반화학 2021. 2. 18. 일반물리학실험 | 압력에따른 끓는점변화 TIP 압력의 변화에 따라 물이 끓는 온도를 측정하고 압력과 끓는점의 관계를 알아본다. 압력의 변화에 따른 물의 끓는점, 증발, 승화를 알기 위해서는 먼저 상변화에 대한 이해가 필요하다. 온도가 어느 정도 높은 상태에서는 분자가 서로 얽매이지 않고 자유롭게 움직인다. 이런 상태를 기체 상태라고 한다. 온도가 내려가면 분자가 천천히 움직이면서 분자와 분자 사이에 서로 끌어당기는 약한 힘이 작용한다. 이 힘에 의해 분자의 자유도 압력에따른 끓는점변화가 떨어져서 액체 상태가 된다. 그러나 어떤 분자들은 표면에서 외부 에너지에 의해 움직임이 활발해지면서 분자들을 서로 끌어당기는 힘을 끊고 다시 기체가 된다. 이 현상을 증발이라고 한다. 이 현상은 반대로도 일어나 기체가 응축되기도 한다. 실제로는 증발과 응축이 .. Engineering/물리학 2020. 10. 22. 유기화학실험 | PCC를 이용한 산화반응 Pyridinium chlorochromate(PCC) 오렌지색 고체 시약으로 1차 알콜에서 알데하이드로 2차 알콜에서 케톤으로 산화하는데 사용된다. PCC는 알코올을 완전히 산화시키는 존스시약과는 다르다. 단점은 독성이 있는 것이다. CC는 염산에 삼산화크롬(CrO3)을 녹이고 염기성 용액인 피리딘을 첨가함으로써 얻을 수 있다. PCC는 약산성을 띄기 때문에 산에 민감한 화합물에는 사용하기 어렵다. 산에 민감한 화합물 -이중 결합이 있는 화합물- 을 산화시키는 방법으로는 methylene chloride 나 DMF 용매하에 PDC를 산화제로 쓰는 방법이 있다. 이 시약을 통해서는 알코올을 알데하이드나 케톤까지 산화시킬 수 있고 특히 알릴 위치의 알코올도 이중결합을 산화시키지 않고 카보닐 화합물로 산화시.. Chemistry/유기화학 2020. 8. 26. 화공기초실험 | 고체의 표면 에너지 측정 TIP 접촉각 측정 방법 및 접촉각 측정에 영향을 주는 원인을 먼저 알아보고, 표면장력 및 판의 성질을 살펴본 뒤 접촉각 측정과 관련된 선행 연구를 고찰하고자 한다. 접촉각을 측정에 영향을 주는 변인 1) 온도 : 접촉각은 온도에 따라 변하므로 결과의 재현성을 보장하기 위해서 표준온도를 반드시 지켜야함 2) 시간 : 표면과 닿아있는 방울의 접촉각은 시간이 지남에 따라 액체의 증발 또는 액체 사이에 존재하는 힘의 변화에 의해서 변한다. 3) 액체방울의 부피 및 크기: 방울의 크기는 접촉각에 영향을 미치는 매우 중요한 변수로 방울의 지름이 증가하면 무거워지고 방울이 무거워지면 중력의 영향을 더 받게 되므로 접촉각은 감소한다. 그러므로 가능한 한 같은 부피, 같은 크기의 용액을 떨어뜨리는게 좋다. 4) 방울 .. Engineering/화학 공학 | 단위조작 | 유체역학 2020. 6. 2. 물리화학실험 | 고체의 용해도 TIP 고체의 용해도를 여러 온도에서 측정하여 용해도 곡선을 작성한다. 용해도(溶解度, solubility) 일정 온도와 압력에서 순수 고체 시료의 용매에 녹는 양은 일정하며, 100g의 용매에 최대한 녹을 수 있는 양이 용해도 이다. 또한, 특정조건하에서 하나의 물질이 다른 물질에 용해하여 포화용액을 만들 때까지 용해하는 양이다. 용해도는 온도와 압력에 의해 변화한다. 용해도를 나타내는 데는 용매 100g 당의 용질의 양 또는 몰수를 사용하는 경우가 많다. 때로는 용매 일정부피당의 용질의 그램수로 나타내기도 한다. 용매가 용해시킬 수 있는 최대 양의 용질이 녹아 있는 경우 용액은 포화(saturated)되어 있다고 하며, 이 상태에서는 용액 속에 존재하는 용질 분자와 결정으로 존재하는 고체분자 사이에 .. Chemistry/물리화학 2020. 5. 29. 일반물리학실험 | 고체의 선팽창 계수 TIP 금속 막대는 온도에 따라 일정한 비율로 길이가 변화하는데 다 이얼 게이지를 통해서 고체의 선팽창계수를 측정하고 물질마다 고유한 값을 가지는 것을 알 수 있다. 선팽창계수는 고체의 길이가 온도에 따라 변화하는 것으로 온도가 1℃올라갈 때 마다 금속막대의 단위 길이 당 길이의 변화를 나타내는데 금속막 대에 온도를 높여주면 온도가 상승함에 따라 물체를 형성하고 있는 분자들의 열 운동에 의해 평균 진폭이 커져 원자 간의 평균 거리가 늘어나 금속막대의 길이 가 늘어나게 된다. 고체의 길이나 부피는 온도 의 함수로서 온도상승에 따라 증가되므로 의 멱급수로 표시할 수 있다. 여기서 l0는 t0=0℃일 때의 막대의 길이이며, α, β, ...등은 물질에 따라 다른 매우 작은 상수값이다. β이하의 항은 α에 비해.. Engineering/물리학 2020. 4. 15. 화학공학실험 | 고체의 열전도도 TIP 고체의 열전도 현상에 대한 이론과 열손실의 계산, 화학 장치 등의 보온·보냉 재료에 따른 선택의 기초 자료로서 상대적인 고체의 열전도도를 이해한다. 이에 따른 열전도도의 측정 방법을 습득하고, 정상 상태의 열 이동으로부터 열전도도를 구하고 전도에 의한 열전달 현상을 이해하도록 한다. 전도란 같은 물체 중에서나 또는 접촉하고 있는 다른 물체 사이에 온도차가 있으면 정지하고 있는 유체의 경우에는 분자의 운동 또는 고온부에서 저온부로 열전달이 일어나는 현상으로, 분자 자신은 진동만 하고 이동은 하지 않는다. 고체를 통해 일어나는 열전도도식은 Fourier의 법칙에 의하여 적용되면 열흐름의 수직인 면적과 온도구배의 곱에 비례한다는 법칙이다. 열의 개념을 이해하고, 열 흐름 메카니즘을 이해할 수 있다 그로.. Engineering/화학 공학 | 단위조작 | 유체역학 2020. 3. 10. 이전 1 2 다음 반응형