반응형 생화학실험 | 단백질의 정량분석 TIP Lowry method와 Bradford method를 사용하여 단백질(protein)의 농도를 측정한다. 단백질의 정량 시료 내에 포함된 단백질의 양, 또는 농도를 구하는 과정으로 280 ㎚에서 흡광도를 측정하는 방법과 단백질의 농도에 따른 색의 변화를 이용하여 분석하는 방법이 있다. 색의 변화를 이용하는 비색정량분석 (colormetric analysis)에는 Bradford법, Biuret법, Lowry법, Bicinchoninic acid법 등이 있다. 280 ㎚의 파장에서의 흡광도 측정 방법은 tyrosine이나 tryptophan 잔기의 흡광도를 측정하는 방법으로 장점으로는 분석이 빠른 것을 들 수 있으며, 단점으로는 tryptophan의 함량 변화에 따라 흡광도가 틀려지고 같은 파장의.. Biology/생화학 2023. 3. 30. 생화학실험 | 단백질 정량(Lowry 법) TIP 어수리의 추출 희석액으로부터 어수리의 단백질을 Lowry법으로 정량한다. Lowry법 알칼리성에서 단백질의 peptide 결합과 구리가 반응하여 Cu2+이온을 생성하는 Biuret 반응의 원리를 이용한 것이다. 발색의 정확한 기작은 밝혀지지 않았지만 Cu2+ 이온은 방향족 아미노산의 산화를 유도하여 phospomolybdotungstate를 푸른색의 heteropolymolybdnum으로 환원시킨다. 이러한 반응 결과 강한 푸른색을 생성하며 그 강도는 tryptophan과 lysine양에 영향을 받는다. 이 방법은 단백질의 농도가 0.01~1.0㎎/㎖의 경우에 측정가능하다. 실험 방법 1. 실험 과정 1) 교반 추출액(10000ppm 용액)을 1000ppm으로 희석하여 마이크로튜브에 넣고 Vort.. Biology/생화학 2023. 3. 24. 생화학실험 | Elastase 저해 활성 평가 TIP 펩타이드는 단백질 성분으로, 길고 짧은 아미노산으로 구성되어 있다. 단백질층을 쌓아주는 역할을 한다. 대부분의 펩타이드는 수분 결합(수분을 끌어들이는) 기능을 한다. 그리고 이론적으로는 피부 손상을 복구하라고 명령하는 세포 대화 성분이다. 이러한 이유로 주름개선효과를 내고 싶다면 펩타이드의 분열을 저해해야 한다. 펩타이드의 분열을 저해하는 방법 중 하나는 펩타이드 결합의 분열하는 과정에서 촉매역할을 하는 효소인 Elastase를 저해하는 것이다. 실험을 통해 분광광도계를 이용한 Elastase 활성 저해를 측정한다. 엘라스틴(Elastin) 엘라스틴은 콜라겐과 함께 결합조직에 존재하고 고무탄력성과 같은 신축성이 있는 단백질이며 조직의 유연성, 신축성에 관여하고 있다. 따라서 신축이 항상 반복되는 .. Biology/생화학 2021. 7. 21. 생화학실험 | ABTS 라디칼 소거능 TIP 인간을 포함한 생물은 호흡이라는 과정을 통해 ATP 등의 에너지를 얻는다. 이러한 과정에 필연적으로 흡입된 산소의 2%를 활성산소로 변환시켜 지니게 되고 이 활성산소는 Free radical을 가진 산소를 의미한다. free radical은 세포막 산화, 촉진, 노화, DNA 변형 등의 문제를 야기한다. 실험을 통해 분광광도계를 이용한 free radical 소거능력을 측정한다. 항산화제(Antioxidant) 항산화제는 산화를 방지하는 물질을 총칭하여 일컫는 말이다. 생체 내에서의 산화 반응은 주로 라디칼이 관여하는 연쇄 반응(chain reaction)을 통해서 이루어지며, 궁극적으로는 세포에 피해를 주게 된다. 싸이올(thiol)이나 아스코르브산(ascorbic acid, 비타민 C)과 같은.. Biology/생화학 2021. 7. 19. 생화학실험 | DPPH를 이용한 항산화 테스트 TIP 일상생활에서 사용하는 물질을 DPPH용액을 이용하여 항산화 능력을 테스트해보고 비교해보기 활성산소 활성산소는 산소 원자를 포함한, 화학적으로 반응성 있는 분자로 반응성이 강하고 다른 유기물과 반응하는 물질이다. 생물체내에서 생성되는 산소의 화합물로 생체 조직을 공격하고 세포를 손상시키는 산화력이 강한 산소이다. 산소가 4개의 전자를 받으면서 독성이 없는 H2O를 만드는 도중에 생겨나는 부산물이다. 반응성이 높은 활성산소는 세포에 독성을 일으킬 수 있지만, 건강한 정상 세포 내에서는 대부분 분해되어 제거된다. 세포 내에서 ROS는 생성과 소멸의 균형에 의하여 일정 소량의 활성산소의 양이 존재하고, 이를 통해서 생리현상을 유도한다. 활성산소의 농도는 자외선이나 높은 열에 노출되는 것처럼 환경적인 스트.. Biology/생화학 2021. 7. 19. 생화학실험 | Tyrosinase 활성 저해 TIP 인간의 피부색은 멜라닌의 양에 의해서 결정된다. 멜라닌의 양이 많을수록 검은색 피부를 띤다. 이러한 이유로 미백효과를 내고 싶다면 멜라닌의 합성을 저해해야 한다. 멜라닌의 합성을 저해하는 방법 중 하나는 Tyrosine을 산화하여 멜라닌을 생성하는 효소인 Tyrosinase를 저해하는 것이다. 실험을 통해 분광광도계를 이용한 Tyrosinase 활성 저해를 측정한다. Tyrosinase는 Tyrosine을 산소가 존재하는 곳에서 산화하여 멜라닌을 생성하는 효소이다. 그러므로 Tyrosinase의 활성을 저해시키면 멜라닌 생성이 억제된다. Tyrosinase를 통해 Tyrosine이 산화되면서 주황색을 띠지만, Tyrosinase 활성이 저해되면 Tyrosinase을 통한 Tyrosine의 산화반응.. Biology/생화학 2021. 7. 10. 생화학개론 | 아미노산과 단백질 화학 TIP 1 아미노산(amino acid) 2 Peptide 3 단백질 단백질은 50개 이상의 L-α-아미노산이 peptide 결합으로 연결된 polypeptide로 생물체의 주요 구성성분이며 생명현상을 나타내는데 가장 중요한 물질이다. 이 polypeptide는 β-구조나 α-나선구조로 섬유상단백질이나 구상단백질을 구성하고 있으며 보조인자(prosthetic group)를 함유하는 것과 함유하지 않는 것이 있다. 단백질은 생체 내에서 여러 가지 화학반응을 촉매하는 효소단백질, hemoglobin, 혈장단백질, myoglobin 및 β1-1-lipoprotein과 같이 운반에 관여하는 단백질, 밀의 gliadin, 달걀의 ovalbumin, 우유의 casein, 철을 저장하는 ferritin 등의 영양과 .. Biology/생화학 2020. 4. 21. 생화학개론 | 핵산의 화학과 대사 TIP 1. 핵산의 구성성분 2 RNA와 DNA 3. Purine과 pyrimidine의 대사 핵산은 생물의 증식이나 생명의 유지에 필수적이며 각 세포 특유의 단백질을 합성하는데 필요한 유전정보를 보존, 전달, 번역하는 기능을 가지고 있다. 핵산은 nucleotide의 중합체(polymer)이며 nucleotide는 purine 염기(adenine, guanine), pyrimidine 염기(cytosine, thymine, uracil), 인산, ribose 또는 2-deoxyribose로 구성되어 있다. 오탄당으로서 2-deoxyribose를 구성성분으로 하는 핵산을 DNA(deoxyribonucleic acid)라 하며 ribose를 가지는 핵산을 RNA(ribonucleic acid)라 한다. D.. Biology/생화학 2019. 12. 2. 생화학개론 | 단백질 정제 TIP 1. 서 론 2. 단백질 정제의 목적 3. 단백질 용해 과정 4. 단백질의 안정화 5. 단백질의 분리 정제 및 농축 6. 정제된 단백질의 순도 검정 7. 정제된 단백질의 변형 및 오염물질에 대한 처리 단백질은 특이성 있는 효소의 촉매작용과 산소나 금속이온 등의 운반 그리고 세포 대사의 조절, 병인체로 부터의 방어, 구조단백질로 생체의 특정 형태 유지 등 다양한 생물학적 기능을 한다. 단백질들은 20여종의 아미노산으로 구성되어있지만 다양한 기능만큼 다양한 구조를 가지고 있다. 단백질은 구조와 기능이 다양함으로 몇 개의 부류로 분류하기는 어렵지만, 단백질의 3차구조에 따라 구형을 이루는 구상단백질과 섬유형을 하고 있는 섬유상 단백질로 나뉠 수 있다. 구상 단백질들은 헤모글로빈이나 사이토크롬 c와 같이.. Biology/생화학 2019. 11. 29. 생화학개론 | 공유결합과 비공유결합 대부분의 세포에서 세포 무게의 약 70~80%를 차지하는 것이 물이다. 약 7%는 무기이온(inorganic ions)과 뉴클레오타이드(nucleotide), 아미노산(amino acid)과 같은 작은 분자들이 차지 한다. 이런 작은 분자들은 실험실 내에서 화학적으로 합성되기도 한다. DNA, RNA, protein과 같은 거대분자(macromolecules)도 일반적인 화학의 법칙을 따르며, 화학적으로 합성될 수 있다. 분자 세포 생물학에서는 거대분자를 이루는 작은 분자들의 특징을 통해 개체와 세포의 기능과 구조를 설명하여 이해를 돕고자 한다. 처음에는 분자 내에서 원자를 연결시켜 주는 공유결합(covalent bonds)을 소개하고, 그 다음으로 보다 큰 분자 내의 원자와 서로 다른 분자사이에 작용하.. Biology/생화학 2019. 10. 6. 이전 1 다음 반응형